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Abstract. Companies are increasingly measuring their products and
services, resulting in a rising amount of available time series data, mak-
ing techniques to extract usable information needed. One state-of-the-
art technique for time series is the Matrix Profile, which has been used
for various applications including motif/discord discovery, visualizations
and semantic segmentation. Internally, the Matrix Profile utilizes the
z-normalized Euclidean distance to compare the shape of subsequences
between two series. However, when comparing subsequences that are rel-
atively flat and contain noise, the resulting distance is high despite the
visual similarity of these subsequences. This property violates some of
the assumptions made by Matrix Profile based techniques, resulting in
worse performance when series contain flat and noisy subsequences. By
studying the properties of the z-normalized Euclidean distance, we de-
rived a method to eliminate this effect requiring only an estimate of the
standard deviation of the noise. In this paper we describe various prac-
tical properties of the z-normalized Euclidean distance and show how
these can be used to correct the performance of Matrix Profile related
techniques. We demonstrate our techniques using anomaly detection us-
ing a Yahoo! Webscope anomaly dataset, semantic segmentation on the
PAMAP2 activity dataset and for data visualization on a UCI activity
dataset, all containing real-world data, and obtain overall better results
after applying our technique. Our technique is a straightforward exten-
sion of the distance calculation in the Matrix Profile and will benefit
any derived technique dealing with time series containing flat and noisy
subsequences.

Keywords: Matrix Profile · Time Series · Noise · Anomaly Detection ·
Time Series Segmentation.
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1 Introduction

With the lower cost of sensors and according rise of IoT and Industrial IoT, the
amount of data available as time series is rapidly increasing due to rising interest
of companies to gain new insights about their products or services, for example
to do pattern discovery [15], user load prediction or anomaly detection [19].

The Matrix profile is state-of-the-art technique for time series data that is
calculated using two time series and a provided subsequence length. It is a one-
dimensional series where each data point at a given index represents the Eu-
clidean distance between the z-normalized (zero mean and unit variance) sub-
sequence starting at that index in the first time series and the best matching
(lowest distance) z-normalized subsequence in the second time series. Both inputs
can be the same, meaning matches are searched for in the same time series. The
Matrix Profile Index, which is calculated alongside the Matrix Profile, contains
the location of the best match (in the second series) for each subsequence.

The Matrix Profile can be used to find the best matching subsequence in a
series, i.e. motif discovery, or to find the subsequence with the largest distance
to its nearest match, i.e. discord discovery. It also serves as a building block for
other techniques such as segmentation [7], visualizing time series using Multidi-
mensional Scaling [22] or finding gradually changing patterns in time series [24].

The usage of the z-normalized Euclidean distance can be explained by two
factors. First, the MASS algorithm [14] was a known method to calculate the
z-normalized distance between a sequence of length m and all subsequences ob-
tained by sliding a window of length m over a longer sequence of length n.
MASS was a vital part of the original method to calculate the Matrix Profile in
reasonable time. Secondly, the z-normalized Euclidean distance can be seen as
a two-step process to compare the shape of two sequences: the z-normalization
transforms each sequence to their normal form, which captures their shape, af-
ter which the Euclidean distance compares both shapes. This makes the Matrix
Profile well suited for finding patterns in data where a wandering baseline is
present, as often occurs in signals coming from natural sources or due to un-
calibrated sensors, or where patterns manifest with different amplitudes, which
can occur by subtle changes in the underlying system or when comparing signals
from different sources.

Although z-normalization is important when comparing time series [10], it
has one major downside: when dealing with flat sequences, any fluctuations (such
as noise) are enhanced, resulting in high values in the Matrix Profile. This be-
havior conflicts with our human intuition of similarity and can have an adverse
effect on techniques based on the Matrix Profile. A preliminary example of this
can be seen in Figure 2, where a discord that is easily detectable using the Matrix
Profile becomes hidden once noise is added to the signal. Previous literature has
mainly avoided cases with series containing flat and noisy regions, most likely
due to this effect.

This paper is an extended version of our previous work [4]. In this version,
we diverge less on the many merits of the Matrix Profile and instead discuss
several properties of the z-normalized distance relevant for the Matrix Profile.
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Furthermore, we have used a new dataset from Yahoo! Webscope in our anomaly
detection use case and introduced a new visualization use case.

This paper is structured as follows: Section 2 lists literature related to the
Matrix Profile. Section 3 discusses several properties of the z-normalized Eu-
clidean distance that are either directly relevant when using the Matrix Profile
or are used in our main contribution. Section 4 provides detail on the effect of
flat, noisy subsequences in the Matrix Profile, as well as our solution to com-
pensate for this effect. We demonstrate our technique for anomaly detection
in Section 5, for semantic segmentation in Section 6, on data visualization in
Section 7 and conclude our work in Section 8.

2 Related Work

In this section, we focus on works related to the Matrix Profile, introduced by
Yeh et al. [23] as a new time-series analysis building block, together with the
STAMP and STAMPI algorithm to calculate the Matrix Profile in batch or
incremental steps respectively.

Internally, STAMP uses the z-normalized Euclidean distance metric to com-
pare subsequences. Originally, all subsequences were compared using the MASS
algorithm [14] allowing the Matrix Profile to be calculated in O(n2 logn), with
n being the length of the series. The later introduced STOMP and SCRIMP al-
gorithms [27, 26] reduced the runtime to O(n2) for both batch and incremental
calculation respectively by applying dynamic programming techniques.

Various variations or enhancements of the Matrix Profile have been pub-
lished. When users want to track the best earlier and later match of each subse-
quence, rather than the best global match, the left and right Matrix Profile can
be calculated instead [24]. The Multidimensional Matrix Profile tracks the best
matches between time-series containing multiple channels [20]. Zhu et al. have
suggested a way to calculate the Matrix Profile when the data contains missing
values, using knowledge about the range of the data [25]. Lastly, we presented
the Contextual Matrix Profile [5] as a generalization of the Matrix Profile that
is capable of tracking multiple matches over configurable time spans.

Different distance measures have also been proposed for the Matrix Profile.
The Euclidean distance or more general p-norm, might be useful in areas such as
finances, engineering, physics or statistics [1]. A distance measure that performs
a non-linear transformation along the time axis and can ignore the prefix or
suffix of sequences being matched, based on Dynamic Time Warping, has been
suggested by Furtado Silva et al. [6]. Recently, we suggested the Series Distance
Matrix framework [5] as a way to easily combine different distance measures
with the techniques processing these distances in a plug-and-play way.

Once the Matrix Profile and corresponding Matrix Profile index have been
calculated, they can be used for motif or discord discovery. In case the user
wants to focus on specific parts of the signal, for example based on time regions
or high-variance periods in the signal, they can shift the Matrix Profile using the
Annotation Vector [3], allowing them to find different sets of discords or motifs.
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The Matrix Profile can also be used as a building block for other techniques.
Time Series Chains are slowly changing patterns that occur throughout a time
series and can be found by analyzing the left and right Matrix Profile [24].
Time series segmentation involves detecting changes in the underlying behavior
of a time series and is possible using the offline FLUSS or online FLOSS algo-
rithm [7], which investigate the number of arcs defined by the Matrix Profile
index to detect likely transitions. Classification of time series is possible through
a dictionary of identifying patterns discovered through the Matrix Profile [21].
The Matrix Profile has also been shown useful for MDS, a data exploration tech-
nique that does not work well when visualizing all subsequences in a series, by
selecting representative subsequences of series [22]. Lastly, MPDist [8], a distance
measure that treats sequences similar if they share many similar subsequences,
is calculated using the Matrix Profile and has been used to summarize large
datasets for visualisation and exploration [9].

The Matrix Profile has been used in various techniques across many domains.
However, series where flat and noisy regions are present have been mostly avoided
in related literature, most likely due to the issue mentioned in Section 1. We sus-
pect this issue affects any Matrix Profile based technique using the z-normalized
Euclidean distance, and will especially have a negative impact on techniques
dealing with discord discovery (such as anomaly detection) or techniques involv-
ing matches made on flat sequences (such as the assumption of motifs being
present in homogeneous regions when performing time series segmentation). To
the best of our knowledge, this issue has not yet been discussed or solved prior
to our work. We show how to solve this issue in Section 4, after first discussing
several relevant properties of the z-normalized distance measure in Section 3.

3 Properties of the Z-normalized Euclidean Distance

This section gathers aspects of the z-normalized Euclidean distance that are
relevant for the remainder of this paper or when working with the Matrix Profile
in general. Some properties listed here are obtainable through straightforward
mathematical derivation of previously published properties, but have not yet
been mentioned in Matrix Profile related literature, despite their high relevance.

3.1 Definition

The z-normalized Euclidean distance Dze is defined as the Euclidean distance
De between the z-normalized or normal form of two sequences, where the z-
normalized form X̂ is obtained by transforming a sequence X of length m so it
has mean µ = 0 and standard deviation σ = 1.

X̂ = X − µX
σX

Dze(X,Y ) = De(X̂, Ŷ ) =
√

(x̂1 − ŷ1)2 + . . .+ (x̂m − ŷm)2
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3.2 Link with Pearson Correlation Coefficient

The z-normalized Euclidean distance between two sequences of lengthm is in fact
a function of the correlation between the two sequences, as originally mentioned
by Rafiei D. [16], though without the derivation we provide below.

Dze(X,Y ) =
√

2m(1− corr(X,Y )

To derive this property, we first highlight the following property of the inner
product of a z-normalized sequence with itself:

σ2
X =

∑m
i (xi − µX)2

m

m =
m∑
i

(
xi − µX
σX

)2

Using this, we can derive the equality as follows:

Dze(X,Y )2 =
m∑
i

(
xi − µX
σX

− yi − µY
σY

)2

=
m∑
i

(
x− µX
σX

)2
+

m∑
i

(
y − µY
σY

)2
− 2

m∑
i

(
x− µX
σX

)(
y − µY
σY

)

= 2m
(

1− 1
m

m∑
i

(
x− µX
σX

)(
y − µY
σY

))
= 2m(1− corr(X,Y ))

3.3 Distance Bounds

Since the correlation is limited to the range [−1, 1], the Dze between two se-
quences of length m will fall in the range [0, 2

√
m], where zero indicates a perfect

match and 2
√
m corresponds to the worst possible match.

As a result, the upper bound of 2
√
m can be used to normalize distances

to the range [0, 1], allowing us to compare matches of different lengths and
enabling us to define and reuse thresholds to define degrees of similarity when
using Dze. This way, we can define a more uniform similarity threshold (e.g.: 0.3)
for sequences of any length rather than specifying a threshold that is dependent
on m (e.g.: a threshold of 3 for sequences of length 25, 6 for sequences of length
100 and so on). Note that Linardi et al. [12] had already pragmatically found
the normalization factor

√
m to compare matches of different lengths, though

without making the connection to the underlying mathematics.
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3.4 Best and Worst Matches

The distance bounds of Zed of 0 and 2
√
m correspond to correlation coefficients

of 1 and −1 respectively. This means that for any sequence X of length m with
σX 6= 0, Dze(X,Y ) = 0 and Dze(X,Z) = 2

√
m if:

Y = aX + b

Z = −aX + b

for any values of a and b, where a > 0.

3.5 Effects of Noise on Self-Similarity

If we have a base sequence S ∈ Rm and two noise sequences N ∈ Rm and
N ′ ∈ Rm sampled from a normal distribution N

(
0, σ2

N

)
, then the expected

distance between the two sequences obtained by adding the noise to the base
sequence can be expressed as follows:

X = S +N

Y = S +N ′

E
[
Dze (X,Y )2

]
= (2m+ 2) σ2

N

σ2
S + σ2

N

(1)

Note that in (1), σ2
N is the variance of the noise and σ2

S +σ2
N is the expected

variance of either noisy sequence. We apply the derivation below, originally pub-
lished in our previous work [4]. For the remainder of this section, we treat the
sequences as random variables.

E
[
Dze(X,Y )2] = E

[
(x̂1 − ŷ1)2 + . . .+ (x̂m − ŷm)2]

= m · E
[
(x̂− ŷ)2]

= m · E

[(
x− µX
σX

− y − µY
σY

)2
] (2)

Since X and Y are the sum of the same two uncorrelated variables, they both
have the same variance.

σ2
X = σ2

Y = σ2
S + σ2

N (3)
Next, we decompose µX and µY in the component from the original sequence

µS and the influence of the noise. Here we use n as a random variable sampled
from the noise distribution. Note that µS can be seen as a constant as it refers
to the mean of the base sequence.

µX = µY = µS + n1 + . . .+ nm
m

= µS + µN

µN ∼ N
(

0, σ
2
N

m

) (4)
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We perform the same decomposition for x and y, where s is an unknown
constant originating from the base sequence:

x = y = s+ n

n ∼ N
(
0, σ2

N

) (5)

Using (3), (4) and (5) in (2), canceling out constant terms and merging the
distributions results in:

E
[
Dze(X,Y )2] = m · E

(nx − ny − µNx
+ µNy√

σ2
S + σ2

N

)2


= m · E
[
(ν)2

]
ν ∼ N

(
0, 2 + 2m

m
· σ2

N

σ2
S + σ2

N

) (6)

To finish, we apply the theorem E[X2] = var(X) + E[X]2:

E
[
Dze(X,Y )2] = (2m+ 2) · σ2

N

σ2
S + σ2

N

(7)

4 Flat Subsequences in the Matrix Profile

While the utility of the z-normalized Euclidean distance as a shape-comparator
has been proven by the many Matrix Profile related publications [22, 24, 12],
results become counter-intuitive for sequences that contain subsequences that are
flat, with a small amount of noise. While humans would consider such sequences
as similar, the z-normalized Euclidean distance will be very high.

We can explain this effect in two ways and demonstrate this in Figure 1,
where we visualize three pairs of noisy sequences that only differ by their slope.
First, considering the Euclidean distance on z-normalized sequences, we can
see in Figure 1 (middle) how the effect of noise becomes more outspoken for
flatter sequences due to the normalization, resulting in a high Euclidean distance.
Alternatively, we can consider the correlation of both sequences, as mentioned
in Section 3.2. Looking at both sequences as a collection of points, shown in
Figure 1 (bottom), we can see that flatter sequences more closely resemble the
random distribution of the underlying noise and are therefor less correlated.
Since a correlation of zero corresponds to a z-normalized Euclidean distance of√

2m, or 1√
2 ≈ 0.707 if we rescale this value using the distance bounds mentioned

in Section 3.3, we can see that uncorrelated sequences will have a high distance.
The effect of flat, noisy subsequences will have a negative effect on some use

cases of the Matrix Profile. Since the flat sequences result in high Matrix Profile
values where we would intuitively expect low values, we can estimate which use
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Fig. 1. Three pairs of sequences with varying slopes, each pair has the same noise
profile. By looking at the effect of the noise in the z-normalized sequences, we see
why the Euclidean distance will return much larger distances for flat sequences. At the
bottom we see a visualization of the correlation between both sequences, where we see
that the slope of the signal has a major influence on the corresponding correlation.

cases will suffer and which will not. For example, anomaly detection or discord
discovery using the Matrix Profile involves finding the highest values in the
Matrix Profile. When flat, noisy sequences are present, true discords may be
hidden by this effect. Another example is the semantic segmentation technique
using the Matrix Profile [7], this technique detects transitions in a signal by
analyzing the matches of each subsequence, assuming homogeneous regions will
contain many good matches. In this case, homogeneous regions containing flat
and noisy sequences will result in poor matches, violating the base principle of
the segmentation technique. Notably, motif detection will not suffer from this
issue, assuming the user is not interested in flat motifs.

Next, we will discuss seemingly useful resolutions that do not actually man-
age to solve this effect before presenting our own solution. First however, we
introduce a synthetic dataset that will serve as our running example in this
section.

4.1 Running Example

We generated a sinusoid signal of 2000 samples and introduced an anomaly in
one of the slopes by increasing the value of 10 consecutive values by 0.5 and
create a noisy copy by adding Gaussian noise sampled from N (0, 0.01). The
Matrix Profile for both signals was calculated using a subsequence length m of
100 and a trivial match buffer of m

2 , as recommended in [23]. The signal and
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corresponding Matrix Profile are displayed in Figure 2. For the noise-free signal,
we see exact matches (distance equal to zero) everywhere except in the region
containing the anomaly. For the noisy signal, we see how the Matrix Profile has
shifted upwards, as would be expected since exact matches are no longer possible.
However, we also see previously non-existing peaks in the Matrix Profile where
the signal was more flat, because of this the anomaly is no longer trivial to locate
automatically.
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Fig. 2. Top: Sinusoid signal without (left) and with (right) added Gaussian noise. An
anomaly of length 10 (red) was introduced at index 950. Bottom: Corresponding Matrix
Profile for both signals, rescaled using the method of Section 3.3. The top discord is
marked in gray. As can be seen, the presence of noise increases the Matrix Profile values
of the flat regions to the degree that they now hide the true anomaly. This figure is
modified from our previous work [4].

Let us briefly further investigate how the properties of the noise affect the
Matrix Profile in this example. Figure 3 displays our starting sinusoidal signal
with anomaly, to which Gaussian noise sampled from different distributions was
added. As expected, we see that as the variation of the noise increases, the Matrix
Profile becomes more deformed. The anomaly is no longer visually obvious in
the Matrix Profile for noise with standard deviation of 0.05 or more. Somewhat
surprising is how quickly this effect becomes apparent: when the noise has a
standard deviation of around 0.02 (at this point the signal-to-noise ratio is 1250
or 31 dB), the anomaly is already occasionally overtaken as the top discord by
the flat subsequences (depending on the sampling of the noise).

Before coming to our solution, we will discuss why some simple, seemingly
useful methods to circumvent this problem do not work.

– Changing the subsequence length m: as m becomes smaller, the effect
of any anomaly on the Matrix Profile will indeed increase. However, as the
subsequences become shorter and relatively flatter as a result, the effect of
the noise also becomes bigger, resulting in a more eratic Matrix Profile.
Increasing m will have a beneficial effect, but this is simply because the
longer subsequences will become less flat in this specific example, so this is
not a general solution. This approach is demonstrated in Figure 4 (top left).
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Fig. 3. A demonstration of the effect of varying degrees of noise on the Matrix Profile.
Left: the sinusoidal signal with noise sampled from various Gaussian distributions.
Right: The corresponding rescaled Matrix Profile. This figure is modified from our
previous work [4].

– Ignoring flat sections: ignoring subsequences whose variance is below a
certain value would result in the removal of the peaks in the Matrix Profile. A
first problem with this is that finding the correct cutoff value is not trivial.
Secondly, this approach will not be applicable in datasets where the flat
subsequences are regions of interest, either as anomalies or for finding similar
subsequences, as is demonstrated in the time series segmentation of Section
6. This approach is visualized in Figure 4 (middle left).

– Smoothing or filtering: by preprocessing the noisy signal, one could hope
to remove the noise altogether. Unfortunately, unless the specifics of the noise
are well known and the noise can be completely separated from the signal,
there will always remain an amount of noise. As was shown in Figure 3, even
a small amount of noise can have a large effect on the Matrix Profile. This
approach is demonstrated in Figure 4 (bottom left).
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Fig. 4. Left: The effects of several seemingly useful methods to combat the effect of
flat, noisy subsequences that in fact do not work. From top to bottom: reducing the
subsequence length, ignoring flat sections and smoothing/filtering. None of these meth-
ods approach the noise-free Matrix Profile. Right: The effect of our noise elimination
technique on the Matrix Profile. We see how the corrected Matrix Profile closely re-
sembles the Matrix Profile of the noise-free signal. This figure is modified from our
previous work [4].
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4.2 Eliminating the Effect of Noise
Ideally, we want flat subsequences to have good matches with other flat subse-
quences. This would be the case if those flat subsequences were stretched and/or
shifted versions of one another, as mentioned in Section 3.4. Unfortunately, this
is not the case due to the effects of noise. We can however, still consider them
to be identical, in which case we can use our derivation from Section 3.5, which
estimates the effect of the noise on the z-normalized Euclidean distance. By
subtracting this estimate during the calculation of the Matrix Profile, we are ac-
tively negating the effects of the noise. The only requirement is that we known
the standard deviation of the noise that is present in the signal. This may be
either known in advance or can be easily estimated by analyzing a flat part of the
signal. Note that we also need the standard deviation of the subsequences being
compared, but as these are already needed for the distance calculation [27, 26],
these are precalculated and available as part of the Matrix Profile calculation.

The algorithm is straightforward, after calculating the squared distance be-
tween a pair of subsequences using any of the existing algorithms, we subtract
the squared estimate of the noise influence. We do this before the element-wise
minimum is calculated and stored in the Matrix Profile, because this correction
might influence which subsequence gets chosen as the best match. Pseudo code
is listed in Algorithm 1 and can run in O(1) runtime.

Algorithm 1: Algorithm for Eliminating the Effects of Noise
Input: d: distance between subsequence X and Y
Input: m: subsequence length
Input: σX , σY : standard deviation of subsequence X and Y
Input: σn: standard deviation the noise
Output: corrDist: corrected distance between subsequence X and Y

1 corrDist =
√
d2 − (2 +m) σ2

n

max(σX ,σY )2

The only difference between this code and the formula from Section 3.5 is that
we use the maximum standard deviation of both subsequences. When processing
two fundamentally different subsequences, this choice effectively minimizes the
effect of the noise elimination technique.

We demonstrate our technique on the running example in Figure 4 (right).
We see that unlike the previously methods, we can closely match the Matrix
Profile of the noise-free signal. We do see some small residual spikes, which
appear depending on the sampling of the noise, they are caused by local higher-
than-expected noise values in that part of the signal.

After demonstrating our noise elimination technique on a limited synthetic
dataset, we will use the remainder of this paper to prove the merit of our noise
elimination method for several use cases using real-world datasets.

5 USE CASE: ANOMALY DETECTION

One of the original applications for the Matrix Profile is the discovery of discords,
where a discord is the subsequence in a series that differs most from any other



12 D. De Paepe et al.

subsequence. Discords in fact correspond to the subsequences starting at the
indices where the Matrix Profile is highest. When interested in the top-k discords,
one can take the top-k values of the Matrix Profile where each value should
be at least m index positions away from all previous discord locations. This
requirement ensures we cannot select overlapping subsequences as discords, as
these basically represent the same anomaly [13].

In this section we demonstrate the benefit of our noise elimination technique
when performing anomaly detection utilizing real-world data from Yahoo. In our
previous work [4], we performed a similar experiment using the “realAWSCloud-
watch” collection from the Numenta Anomaly Benchmark [11].

We use the Labeled Anomaly Detection Dataset of Yahoo! Web-
scope, consisting of both real and synthetic time-series. For this paper we focus
on the “A1Benchmark” dataset, which contains real traffic metrics from Yahoo!
services, reported at hourly intervals. The benchmark consists of 67 time series
with labeled anomalies, ranging from 741 to 1461 data points. The time-series
vary considerable, containing diverse ranges, seasonality, trends, variance, among
other properties. Figure 5 shows some examples.
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Fig. 5. Extracts of four series from the Yahoo! Webscope anomaly dataset.

Rather than classifying each point in the time series as anomalous or nor-
mal, which would involve optimizing a classification threshold, we instead score
performance by counting the number of attempts needed before all anomalies in
a series are reported, or until 10 incorrect guesses are made, as was done in our
previous work for the Numenta benchmark [4]. This way of scoring resembles
a user being alerted with suspected anomalies, measuring the capability of the
algorithm to present relevant anomalies.

We perform anomaly detection by self-joining each series with a subsequence
length of 24 (one day) and using the left Matrix Profile [24] for anomaly detec-
tion. The left Matrix Profile only tracks matches preceding each subsequence,
similar to how streaming data is processed, and increases the chance to treat
sudden changes as discords.

Since we do not know the characteristics of the noise, we would need to
estimate the standard deviation using the signal. However, this is not a trivial
task since we do not known in advance which signals contain noise and which
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do not. Making an inaccurate estimate by assuming a non-noisy signal is in fact
noisy would result in poor predictions.

To detect the presence of noise, we devised a heuristic where we evaluate
the Matrix Profile values of the first three days of data. If the average rescaled
Matrix Profile value is above a certain threshold, we assume the start of the data
is noisy and we take the median standard deviation of all subsequences in the
first three days as noise parameter. Based on the first 10 datasets and leaving
all other datasets as test set, we manually determined a threshold of 0.2.

This heuristic marked 34 out of 67 datasets as noisy. We compared the
anomaly detection results for these 34 datasets with and without our noise elim-
ination technique. The results are displayed in Table 1, they show that our noise
elimination technique performed better for 32 out of 34 datasets. On average, the
regular Matrix Profile found 36 out of a total of 84 anomalies using 291 incorrect
guesses, after applying our technique this improved to 79 found anomalies using
only 80 incorrect guesses. This means that on average, one in two suspected
anomalies turned out to be correct!

Figure 6 shows two close-ups demonstrating the effect of the noise elimination
technique. It shows the Matrix Profile having a somewhat consistent high value,
whereas the noise eliminated version only increases near the actual anomalies.
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Fig. 6. Two examples displaying the beneficial effect of our noise elimination on
anomaly detection. The anomalies are not noticeable in the regular Matrix Profile,
but are obvious after applying noise elimination.

Our method was unable to find all anomalies for four of the datasets. Two
of these are shown in Figure 7. In dataset 53 the first two anomalies were not
detected due to their similarity with other flat series. In dataset 61 the algorithm
behaves similarly to the original matrix profile due to the sudden increase in the
noise level and becomes unable to differentiate anomalies from noise. In this case
the first anomaly is found but the second one is missed.

6 Use Case: Semantic Segmentation for Time Series

Semantic segmentation of time series involves splitting a time series into re-
gions where each region displays homogeneous behavior, these regions typically
correspond to a particular state in the underlying source of the signal. Applica-
tions of segmentation may include medical monitoring, computer-assisted data
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Table 1. Results of anomaly detection using the Matrix Profile with and without
noise elimination on the Yahoo! Webscope anomaly dataset. For each dataset, we kept
guessing until all anomalies were found or 10 incorrect guesses were made. When using
noise elimination we were able to find most anomalies with few attempts.

Without Noise Eliminaton With Noise Elimination
Dataset # Anomalies Found Anomalies Wrong Guesses Found Anomalies Wrong Guesses
1 2 0 10 2 0
2 2 1 10 2 3
4 3 0 10 3 0
5 1 0 10 1 0
6 1 0 10 1 0
8 3 0 10 3 5
10 1 0 10 1 0
11 1 0 10 1 0
12 2 1 10 2 1
14 1 1 8 1 0
17 3 1 10 3 2
19 3 0 10 3 0
21 2 1 10 2 1
22 1 1 8 1 0
23 12 5 10 12 3
24 3 3 3 2 10
25 1 1 2 1 0
31 2 0 10 2 1
32 2 2 5 2 1
33 1 0 10 1 1
40 2 1 10 2 9
41 3 1 10 3 3
42 3 0 10 3 7
43 3 2 10 3 1
45 1 0 10 1 0
48 1 0 10 0 10
50 1 1 2 1 0
53 4 4 3 2 10
58 1 0 10 1 0
61 2 0 10 1 10
62 4* 0 10 4 1
63 1 0 10 1 0
66 6 5 10 6 1
67 5 5 0 5 0
Sum 84 36 291 79 80

* Dataset 62 actually contains five anomalies, but because the first anomaly occurs
within the first three days which are used to estimate the noise level, we do not
consider it in the results.
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Fig. 7. Left: Dataset containing two anomalies which are not detected as they closely
resemble the estimated noise. The noise eliminated Matrix Profile is zero for this seg-
ment. Right: Dataset where the original amount of noise is small but increases at one
point, causing the Noise Elimination to lose its effect.

annotation or data analysis in general. In this section, we perform semantic
segmentation on the PAMAP2 activity dataset using the Corrected Arc Curve
(CAC). The CAC is calculated by the FLUSS algorithm for batch data or the
FLOSS algorithm for streaming data, using the Matrix Profile index [7].

The CAC was introduced as a domain agnostic technique to perform time
series segmentation on realistic datasets, with support for streaming data while
requiring only a single intuitive parameter (the subsequence length to consider).
During evaluation the CAC was found to perform better than most humans on
dozens of datasets, allowing the authors to claim “super-human performance” [7].

The CAC is a vector of the same length as the Matrix Profile, and is con-
structed by analyzing the Matrix Profile Index. They consider arcs running from
each subsequence to the location of its nearest match. To calculate the CAC,
they compare the number of arcs running over each location against the amount
of arcs expected if all match locations would be determined by uniform sampling
over the entire series. This ratio is defined as the CAC, its values are strictly
positive without an upper bound, but can be safely restricted to the range [0, 1].
Assuming homogeneous segments will display similar behavior while heteroge-
neous segments will not, a low CAC value is seen as evidence of a change point,
though a high CAC value should not be seen as evidence of the absence of one.

We use the PAMAP2 Activity Dataset [17], which contains sensor mea-
surements of 9 subjects performing a subset of 18 activities like sitting, standing,
walking, and ironing. Each subject was equipped with a heart rate monitor and
3 inertial measurement units (IMU) placed on the chest, dominant wrist and
dominant ankle. Each IMU measured 3D acceleration data, 3D gyroscope data
and 3D magnetometer data at 100 Hz. The time series are annotated with the
activity being performed by the subject and transition regions in between activi-
ties. The duration of each activity varies greatly, but most activities last between
3 to 5 minutes.

The PAMAP2 dataset has already been used in the context of segmenta-
tion [20], where the authors used the Matrix Profile to classify the activities in
passive and active activities. At one point they note that the motif pairs in the
passive actions (such as lying, sitting or standing) are less similar and therefore



16 D. De Paepe et al.

less useful for segmentation. The underlying problem here is the inability to de-
tect motifs in the passive activities, because they mainly consist of flat, noisy
signals. By using our method to compensate for this effect, we will be able to
find the needed motifs, resulting in better segmentation results.

We applied time series segmentation on the passive activities present in the
PAMAP2 dataset, focusing on the “lying”, “sitting” and “standing” activities.
We picked these activities since their measurements display very few patterns in
the data and they are performed consecutively for all subjects, meaning we did
not have to introduce time-jumps in our experiments.

We considered subjects 1 to 8 of the dataset (subject 9 had no recordings of
the relevant activities) and tested both the transition from “lying” to “sitting”
as well as the transition from “sitting” to “standing”. For each subject, we used
the 3 accelerometer signals from the IMU placed on the chest of the subject,
any missing data points were filled in using linear interpolation. We calculated
the CAC by self-joining each sensor channel with and without noise elimination
using a subsequence length of 1000 (10 seconds). The standard deviation of the
noise was estimated (without optimizing) by taking the 5th percentile of the
standard deviations of all subsequences.

An example of the signals spanning over the 3 passive activities can be seen in
Figure 8. We emphasize it is not our goal to build the optimal segmentation tool
for this specific task, but to simply evaluate the effect of our noise elimination
technique on the CAC for sensor signals containing flat and noisy subsequences.
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Accelerometer 2
Accelerometer 3

Fig. 8. Three accelerometer channels of subject 6 from the PAMAP2 dataset. We see
three activities and one long transition period. No clear patterns are discernible and
many flat and noisy subsequences are present. Reproduced from our previous work [4].

There is one unexpected side effect of the noise cancellation technique that
needs to be corrected before calculating the CAC. Because most of the flat
subsequences will have an exact match (distance equal to zero) to other flat
subsequence, there will be many locations to represent the best match. However,
since the Matrix Profile Index only stores one value, the selected best match will
become determined by the first or last match, depending on the implementation
of the Matrix Profile. This creates a pattern in the Matrix Profile Index, that
actually violates the CAC’s assumption of matches being spread out over a
homogeneous region. Note that this effect is in fact also present in the normal
Matrix Profile, but typically has goes unnoticed because multiple exact matches
are extremely rare.
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To prevent this effect, we need to randomly pick one of the best matches and
store its location in the Matrix Profile Index. This is straightforward when using
the STOMP algorithm [27], as every step in STOMP calculates all matches
for one particular subsequence. If we want to calculate the Matrix Profile in
an online fashion using the SCRIMP algorithm [26], where the matches for one
specific subsequence are spread over many iterations, we need to utilize reservoir
sampling [18] in the construction of the Matrix Profile Index. Reservoir sampling
allows uniform sampling without replacement from a stream without knowing
the size of the stream in advance. We use it to sample the stream of best matches.
Implementing reservoir sampling requires us to store an additional vector of the
same length as the Matrix Profile, to keep track of the number of exact matches
that was encountered so far for each subsequence. Pseudo code to update the
Matrix Profile and its indices is listed in Algorithm 2.

Algorithm 2: SCRIMP Matrix Profile Update using Reservoir Sampling
Input: dists: distances on diagonal calculated by SCRIMP
Input: indices: corresponding indices of dists
Input: numMatches: number of exact matches per subsequence
Input: mp: part of Matrix Profile vector being updated
Input: mpi: part of Matrix Profile Index being updated
/* Handle new better matches */

1 better = dists < mp
2 mp[better] = dists[better]
3 mpi[better] = indices[better]
4 numMatches[better] = 1

/* Handle matches equal to current best match */
5 equal = dists == mp ∧ finite(dists)
6 numMatches[equal] = numMatches[equal] + 1
7 for i in equal do
8 if random() < 1/numMatches[i] then
9 mpi[i] = indices[i]

The code is straightforward. In lines 1 to 3 we update the Matrix Profile and
Index if a better match was found and in line four we reset the tracked number
of exact matches. In line five, we gather any matches equally good as the match
being tracked in the Matrix Profile. Line six increases the counter of any equally
good matches found and line seven to nine perform the reservoir sampling to
update the Matrix Profile Index for each newly found equal match.

For both experiments, the CAC was calculated using the Matrix Profile with
randomly sampled indices. The activity-transition point was taken where the
CAC was minimal, ignoring any values in the first and last 50 seconds (5 times
the subsequence length), as suggested by the original paper [7]. We considered
4 segmentations per subject: one CAC for each of the three sensor channels and
one obtained by averaging the individual CACs.
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To evaluate the ability to predict the transition period, we define the score as
the normalized distance between the predicted transition and the ground truth
transition. Note that some ground truth transitions are instantaneous, while
others consist of a transition period, as can be seen in Figure 8. We also added
an additional buffer period equal to the subsequence lengthm (10 seconds) before
and after the transition period that we still consider as correct to consider the
detection interval of the Matrix Profile. Pseudo code for our scoring function is
listed in Algorithm 3, a score will range from 0 to 100, where lower is better.

Algorithm 3: Scoring Function for Semantic Segmentation
Input: estimate: estimated transition
Input: trueStart, trueEnd: ground truth start and end of transition
Input: n: length of series (both activities and transition period)
Input: m: subsequence length / transition buffer
Output: score

1 if estimate < trueStart−m then
2 score = ((trueStart−m)− estimate)/n ∗ 100
3 else if estimate > trueEnd + m then
4 score = (estimate− (trueEnd + b)/n ∗ 100
5 else
6 score = 0

Table 2. Scores for the segmentation of the transition from “lying” to “sitting” using
the 3 chest accelerometers from the PAMAP2 dataset for subjects 1 through 8, with
and without noise elimination applied. Segmentation is performed using the CAC from
a single sensor (C1, C2 and C3) and using the average of the 3 CACs (combined).
Similar or better performance are achieved when applying noise elimination for all
subjects except subject 1. Results are reproduced from our previous work [4].

Without Noise Elimination With Noise Elimination
Subject C1 C2 C3 Combined C1 C2 C3 Combined

1 5.9 31.3 31.9 31.7 41.3 31.8 41.8 36.7
2 32.9 1.4 1.4 1.4 28.8 1.4 1.7 1.4
3 35.9 2.8 31.1 33.8 2.4 2.3 2.3 2.3
4 0.0 2.8 5.9 0.0 0.0 1.5 6.6 0.8
5 1.1 7.6 5.1 3.9 1.6 1.7 4.9 1.6
6 2.5 1.9 2.3 2.3 2.4 1.9 2.0 2.4
7 0.1 1.8 11.1 2.0 2.1 1.8 1.9 1.9
8 0.0 1.4 5.5 1.7 0.0 1.4 1.4 1.4

Average 9.32 9.61 7.71 6.07
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Table 3. Scores for the segmentation of the transition from “sitting” to “standing”
using the 3 chest accelerometers from the PAMAP2 dataset for subjects 1 through
8, with and without noise elimination applied. Segmentation is performed using the
CAC from a single sensor (C1, C2 and C3) and using the average of the 3 CACs (com-
bined). Overall, we see similar or better performance when applying noise elimination,
except for the segmentation using the first channel for subject 1, 3 and 8. Results are
reproduced from our previous work [4].

Without Noise Elimination With Noise Elimination
Subject C1 C2 C3 Combined C1 C2 C3 Combined

1 32.5 0.0 3.6 2.2 38.7 0.0 3.7 2.2
2 36.5 37.2 36.4 37.0 7.1 30.0 32.7 29.2
3 10.0 30.2 43.1 30.2 43.2 14.0 43.7 43.2
4 7.8 1.9 1.1 1.2 0.7 2.0 1.3 1.3
5 13.1 0.0 28.5 10.6 13.3 1.0 1.2 1.0
6 36.1 36.6 26.9 36.6 23.3 3.4 26.5 3.2
7 43.1 38.0 16.5 16.5 43.4 1.6 0.0 1.6
8 2.3 1.0 24.8 1.0 21.1 0.0 16.5 1.0

Average 21.12 16.9 15.35 10.3

Table 2 lists the results for the segmentation when transitioning from “lying”
to “sitting”. For all subjects expect subject one, the results show similar of im-
proved scores for segmentation using individual sensors as well as the combined
approach when using the noise elimination technique. The average score for the
individual sensors improves from 9.32 to 7.71, a modest improvement corre-
sponding to a gain of about 8 seconds. The segmentation based on the combined
CACs improves from 9.61 to 6.07, a gain of about 18.5 seconds. Note that most
scores without noise elimination were already very good, leaving little room for
improvement. The bad results for subject one can be explained by an incorrect
early estimate which is caused by movement of the subject near the start of the
“lying” activity. Note that subject one has bad scores for both techniques.

Table 3 lists the results for the transition from “sitting” to “standing”. Like
the previous experiment, we see similar or improved results when applying noise
elimination, except for subjects one, three and eight using the first sensor series
and for the combined approach for subject three. While the overall scores are
worse, the gain by enabling noise elimination is more significant. The average
result for a single sensor improves from 21.12 to 15.35, corresponding to a gain of
about 27 seconds. When using the combined approach the average score improves
from 16.9 to 10.3, a gain of around 31 seconds.

Though limited in scope, these result indicate that the noise elimination tech-
nique improves the ability of the CAC to detect transitions in a series containing
flat and noisy subsequences.
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7 Use Case: Data Visualization

Data visualization is a great tool for exploring newly acquired data or for find-
ing similar data in a larger data collection. Unfortunately, time series data for
realistic use cases is typically very lengthy, making trivial visualizations useless
as these will fail to simultaneously capture the overall and minute details of a
series. More advanced techniques summarize the series in a way that is still use-
ful to gain insight into the data. The visualization technique used in this section
is the Contextual Matrix Profile (CMP), recently introduced by the authors [5].

The CMP is a generalization of the Matrix Profile that tracks the best match
between predefined ranges whereas the Matrix Profile tracks the best match for
every possible sliding window location. The distinction between the two can also
be made in terms of the implicit distance matrix, defined by the pairwise distance
between all subsequences of two series. Where the Matrix Profile equals the
column-wise minimum of the distance matrix, the CMP consists of the minimum
over rectangular areas of the distance matrix.

For this use case, we use the Chest-Mounted Accelerometer Dataset [2],
an activity recognition dataset publicly available at the UCI repository1. The
dataset contains data of 15 subjects performing seven different activities, mea-
sured using a chest-mounted accelerometer sampling at 52Hz. The data is la-
beled with the corresponding activity, though visual inspection reveals the labels
seem misaligned for some subjects. The activities performed are: Working at a
computer; standing up, walking, going up/down stairs; standing; walking; going
up/down stairs; walking while talking; talking while standing. We selected this
dataset for this use case as it contains both activities with a periodic nature as
well as passive activities where the accelerometer signal consists of mainly noise.
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Fig. 9. Top: Uncalibrated accelerometer data (3 channels) for subject 1, sampled at
52Hz, for a total of 52 mins. The annotations A1 to A7 indicate the corresponding ac-
tivity labels. The activities performed are computer work, standing up/walking/stairs,
standing, walking, standing, stairs, standing, walking while talking, and talking while
standing. Bottom: four extracts of 4 different activities, each 5 secs long.

1 https://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single+Chest-
Mounted+Accelerometer
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For the remainder of this section, we focus on the first subject of the dataset
due to space constraints, though similar results were obtained for all subjects.
This series comprises 52 minutes of data containing nine regions of activity, it is
visualized in Figure 9. In the top of the figure we see the complete dataset with
annotations indicating the activity regions. At the bottom of the figure, close-
ups of the signal for four different activities are displayed. While the “working
at computer” consists mainly of a flat singal, a periodic pattern is visible in the
channels of the other activities, with the “walking” activity having the clearest
pattern. Note that the three data channels are uncalibrated, which is not an
issue since the z-normalization focuses on the shape of subsequences rather than
the absolute values.

The CMP for each data channel is calculated by self-joining the data, using a
subsequence length of 52 (1 sec) and specifying contexts of length 469 at 520 (10
secs) intervals. The context length is chosen so that matches can never overlap.
Calculating the CMP comes down to dividing the series in non-overlapping,
contiguous 10 sec windows and finding the best one second match for each pair
of windows. The resulting CMP is a 312 by 312 matrix, each value representing
the distance of the best match of the intervals defined by the row and column.
The resulting CMPs for each data channel can be seen in Figure 10 (left). To
demonstrate the value of the visualization, we also added grayscale band to the
CMP outline that corresponds to the activity labels present in the data.

To interpret a CMP visualization, one should consider both axes represent
the flow of time, starting at the origin. Each value in the CMP indicates how
well one region of time matched another region, low (dark) values represent good
matches while high (light) values represent bad matches. Looking at Figure 10
(left), we can observe a number of things. Most obvious is the symmetry of
each CMP, this is because we performed a self-join. We also see the dark square
centered at index 100 in all three channels, this indicates a period containing a
repetitive pattern across all channels. This region corresponds to the “walking”
activity in the dataset, as can be seen by referencing Figure 9. Next, for channel
two we see similar dark regions for the “stairs” and “walking while talking” activ-
ities, meaning there is a similarity between all three activities based on channel
two. Though these activities also appear in channel one and three, they are less
visually noticeable, especially the “stairs” activity in channel one could be easily
missed. The same can be said for the very short “standing up/walking/stairs”
activity that precedes the walking activity. One final observation is the presence
of high value bands occurring across all channels to some degree between indices
0 and 60 and between 200 and 250. While the first band corresponds to the
“computer work” activity, there is no clear-cut corresponding activity for the
second band. Most likely, these artefacts are caused by regions with very flat
signals, where the noise has a large effect on the distance calculation.

Next, we calculated the CMPs while using the noise elimination technique,
keeping all other parameters equal. We estimated the noise parameter for each
channel by sliding a one second window over the entire series, calculating the
standard deviation for each location and taking the value corresponding to the
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Fig. 10. CMPs produced for each channel of the dataset using z-normalized Euclidean
distance without (left) and with (right) compensating for the noise. The left and bottom
grayscale bar for each CMP corresponds to the different activity labels for each of the
time windows. We see how the noise elimination results in large areas of exact matches
for the passive activities, because of this, the different transitions between active and
passive activities is clearly visible. In case the activity labels were unknown, the CMP
would have given a good indication of the different regimes present in the signal.
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fifth percentile, similar as we did in Section 6. For reference, these values were:
2.6, 2.3 and 2.7 respectively. The resulting CMPs are visualized in Figure 9
(right).

We see the CMPs generated using noise elimination now have additional
large, rectangular regions with low values. As can be seen from the activity
markings, these regions correspond to the passive activities (computer work,
standing and talking while standing), where the series is flat and lacks distinctive
patterns. Looking in detail, we see how the activity markings almost perfectly
line up with the transitions in the CMP, which is major difference with the CMPs
without noise elimination. We do see some line artefacts in the final activity of the
dataset for all channels, near index 190 and 280, which correspond to increases in
the signal on all three channels. The questions whether or not there is an activity
change occurring there is in a way debatable and may simply be a question of
tweaking the noise parameter or refining the activity labels.

Of course, the CMP visualization can provide more insights than simply the
difference between passive and active activities. It can also be used to differenti-
ate between different activities, provided these activities have different underly-
ing patterns. As an example, we can see that for the CMP of the first channel,
the activities “walking” and “walking while talking” have better matches than
“walking” and “stairs”. This is not the case for channels two and three. When
looking at the closeup data of Figure 9, we can in fact see a more distinct pattern
for channel one for the “stairs” activity. We do not quantify the ability to dis-
cern various activities as it is not in scope of this paper, our goal was simply to
demonstrate the added benefit of noise elimination when visualizing data with
the CMP.

To conclude, we demonstrated the effect of the noise elimination technique for
data visualization using the CMP on accelerometer data for an activity dataset.
Flat signals, such as those from recording passive activities, will result in high
values in the CMP and might make it difficult to see the patterns of the underly-
ing data. If we apply the noise elimination technique while calculating the CMP,
the passive activities become easily discernible as regions of low values, giving
the user better insight in the underlying structure of the data and allowing the
user to focus more on the more salient parts. Importantly, the regions with active
activities are unaffected by the noise elimination, meaning we can apply noise
elimination without risk.

8 Conclusion

In this paper we explained the unintuitive behavior of the z-normalized Euclidean
distance when comparing sequences that are flat and noisy, and demonstrated
how this negatively affects the Matrix Profile and techniques using the Matrix
Profile as building block. We discussed several properties of the z-normalized
Euclidean distance, including an estimation of the effect of noise, which we use
to eliminate this effect altogether.



24 D. De Paepe et al.

We applied our noise elimination technique on three different use cases involv-
ing real-world data from open data sets. For anomaly detection on the Yahoo!
Webscope anomaly dataset, we were able to automatically guess twice as many
anomalies while utilizing less than one third of attempts when using our tech-
nique. When used for semantic time series segmentation, we showed an improved
accuracy for detecting the transition between two passive activities. Finally, in
our visualization use case, we showed a major change in the visualization of
activity data using the Contextual Matrix Profile, allowing us to separate the
underlying activities that were previously indistinguishable.

Since our technique is conceptually simple, users should be able to reason
whether or not their use case will benefit from our technique. Our technique is
straightforward to implement and incurs only a constant factor overhead, so it
can be used by everyone using Matrix Profile related techniques working with
data containing flat and noisy subsequences.

Future remains on more robust noise estimations and dealing with series
where noise characteristics change over time.
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