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Summary

Sensors are affecting ever more facets of our personal lives. Personal activity trackers
monitor our exercise and sleeping regimes, weather forecasts are based on detailed
atmospheric measurements, and car sensors use a wide variety of colorful indica-
tors to inform us when something needs attention. Similarly, sensors become more
widespread in industry as well. Machine sensors can determine when maintenance
is due, and virtual sensors help secure the online services we depend on everyday.
Thanks to the decreasing cost of data storage and the rise of cloud service providers
data can now be stored in higher quantities and higher resolutions. Of course, the goal
of companies is to use data analytics to gain insights and improve their products and
services.

A wide range of data analytics techniques exists to gain insights from data. Thanks
to the finer resolution and higher detail in measurement data, we can now treat more
and more data as (time-)series, where data is a sequence of evolving measurements
rather than a collection of independent data points, opening a whole new world of data
analytics techniques to be explored. This dissertation discusses various data analytics
methods for working with series data, focusing on pattern-based techniques. Visuali-
sations show similarity throughout time, anomaly detection flags suspicious patterns,
and repeating patterns can be easily found. All methods deal with insight extraction in
some way and can be applied to a wide range of domains.

Chapter 1 familiarizes the reader with relevant concepts to understand the later
chapters. We discuss the four categories of data analytics which we will use to situate
our contributions and divulge on the characteristics of (time-)series and anomaly detec-
tion. Next, we provide an introduction to a series processing technique, i.e. the Matrix
Profile (MP), which is a state-of-the-art time series analysis technique and forms an
important building block in our techniques presented in later chapters. Finally, we
provide an overview of our publications.

In Chapter 2 we present a method for detecting poor quality welds in a steel mill
production line using welding current data. Here, we use a classical approach to incor-
porating time series data, i.e. we calculate statistical features from the measurements
obtained during the welding process. These features are combined with metadata de-
scribing the characteristics of the steel coils to train a model that predicts the welding
current. Because we use a hybrid model, i.e. one where we combine machine learning
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2 SUMMARY

with knowledge of physical laws, the parameters of the trained model give insight into
the resistivity factors for each type of steel. Furthermore, this model can automatically
adjust to sudden or gradual changes of the process, attributed to machine maintenance
and slight variations in the chemical composition of welded steel.

Chapter 3 marks the start of our pattern-based approach to time series. It intro-
duces the Series Distance Matrix (SDM) framework, whose ideas and code base form
the foundation for later chapters. SDM is a type of plug-and-play framework that al-
lows freely combining various data analytics techniques related to Matrix Profile. It
highlights the utility of the distance matrix as a core functionality upon which other
techniques can be based. In this way, we treat the traditional Matrix Profile as one spe-
cific setup of SDM. This chapter also introduces the Contextual Matrix Profile (CMP)
as a new technique that fits within SDM. Whereas the Matrix Profile represents a one-
dimensional reduction of the distance matrix, the CMP represents a two-dimensional
reduction. We demonstrate the utility of the CMP for visualization purposes, where it
can highlight trends throughout time, and for anomaly detection, by finding deviations
from those trends.

Next, Chapter 4 focuses on the use of the z-normalised Euclidean distance as dis-
tance measure in SDM, which is the original similarity measure used for the MP as
it mainly compares the shape of subsequences. We analyze the link with the Pearson
correlation, which allows us to normalize the distance and allows comparing distances
when using different subsequence lengths. An undesired side effect of this measure
is seen when data contains flat subsequences and has some amount of noise present,
two properties that are quite common in realistic data. In this case, reported distances
will differ greatly from human intuition and hinders the use of SDM techniques. By
estimating the impact of this effect on the distances, we can easily negate this effect.
We show the benefit of this approach for three different use cases and data sets, i.e.
visualization, semantic segmentation and anomaly detection.

Finding repetitions is an a valuable insight when working with series. Where the
MP and CMP focus on finding the single best repetition in series, one recent algorithm
finds the (top-k) best repetitions over a collection of series. In Chapter 5, we extend this
technique and define the Radius Profile (RP), as another component that fits into the
SDM framework. The RP gives insight into how well every subsequence is repeated
over a collection of series. The common-k Radius Profile is yet another proposed
variation for finding repetitions when working with a single series rather than multiple.
This technique can be used to find the most common patterns in a series, i.e. the
subsequences that are best preserved over a number of repetitions.

Where the previous chapters mainly treat data analytics methods as independent
techniques, Chapter 6 shows how these methods can be used as part of a larger data
processing system. It describes a use case from theDyversify project, where a full stack
data analytics prototype was built that combines machine learning (data-driven) tech-
niques with semantic (knowledge-driven) techniques. The goal was to automatically
detect anomalies or events in data originating from ventilation units. A dynamic dash-
board matches the semantically enriched anomalies with suitable visualisation widgets
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using semantic reasoning, thereby reducing the workload of its operator. Through in-
teraction with the dashboard, the operator can inspect these anomalies and indicate
which anomalies are relevant for them. The first anomalies detected by this system
will be discords, i.e. unique patterns that can be seen as potential anomalies, and are
found by a streaming MP component. When patterns occur a second time, they are no
longer detected as discords. However, if the operator indicated the corresponding pat-
tern as relevant, a pattern detector will report an event for the second occurrence. The
detection components utilise these confirmed anomalies as pattern templates to detect
matching events in future data. Chapter 6 describes the overarching architecture of this
system. It details how data is ingested in the Obelisk system, transported using Kafka,
semantified using the RMLStreamer, processed using the SDM framework and seman-
tic processing techniques, and ultimately reaches the dashboard where user interaction
feeds back into previous components. This chapter also bundles our experiences with
combining semantic and machine learning techniques.

We summarize our research in Chapter 7 and discuss directions for future work.





Samenvatting

Sensoren beïnvloeden meer en meer aspecten van ons persoonlijk leven. Persoon-
lijke activiteitstrackers monitoren onze beweging- en slaapregimes, weersvoorspellin-
gen zijn gebaseerd op gedetailleerde atmosferische metingen, en sensoren in auto’s
gebruiken allerlei kleurrijke indicatoren om ons te informeren dat iets onze aandacht
vereist. Het gebruik van sensoren in de industrie neemt eveneens toe. Sensoren in ma-
chines kunnen bepalen wanneer onderhoud nodig is en virtuele sensoren dragen bij tot
het beveiligen van de online diensten waar we dagelijks gebruik van maken. Dankzij
de dalende kosten van gegevensopslag en de opkomst van cloud service providers kun-
nen gegevens nu in grotere hoeveelheden en hogere resoluties opgeslagen worden. Het
doel van bedrijven is uiteraard om data-analyse te gebruiken om inzichten te verkrijgen
en producten en diensten te verbeteren.

Er bestaat een breed scala aan data-analysetechnieken om inzichten uit data te ex-
traheren. Dankzij de fijnere resolutie en betere detail in meetgegevens kunnen we nu
meer data als tijdsreeksen behandelen, hier bestaan metingen uit een reeks evoluerende
waarden in plaats van een verzameling onafhankelijke datapunten. Dit opent een hele
nieuwewereld aan data-analysetechnieken om te ontdekken. Dit proefschrift bespreekt
verschillende data-analystechnieken voor het werken met tijdsreeksen, met een nadruk
op patroongebaseerde technieken. Visualisaties laten toe om gelijkenissen doorheen
de tijd te vinden, anomaliedetectie kan gebruikt worden om afwijkende patronen te
vinden, en andere technieken dienen om repetitieve patronen te vinden. Alle bespro-
ken technieken hebben te makenmet het verwerven van inzichten en zijn niet gebonden
aan één bepaald domein.

Hoofdstuk 1maakt de lezer vertrouwdmet relevante concepten om de latere hoofd-
stukken te begrijpen. We bespreken vier categorieën van data-analyse die we zullen
gebruiken om onze bijdragen te situeren, verder gaan we in op de kenmerken van tijds-
reeksen en anomaliedetectie. Vervolgens verdiepen we ons in technieken rond series-
verwerking waaronder de zogenaamde Matrix Profile. Dit is een state-of-the-art tech-
niek voor tijdsreekanalyse en vormt een belangrijke basis voor de technieken die in
latere hoofdstukken worden voorgesteld. Ten slotte geven we een overzicht van onze
publicaties.

In Hoofdstuk 2 stellen we een methode voor die lassen van slechte kwaliteit kan
detecteren in productielijnen van staalfabrieken, gebaseerd op de gemeten lasstroom.
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6 SAMENVATTING

Hier gebruiken we een klassieke benadering om met tijdreeksgegevens om te gaan:
we gebruiken statistische eigenschappen van de metingen tijdens het lasproces. Deze
statistische waarden worden gecombineerd met metadata van de stalen spoelen om een
model te trainen dat de lasstroom voorspelt. Omdat we een hybride model gebruiken,
namelijk een model waarbij we machine learning combineren met kennis van fysische
wetten, geven de parameters van het getrainde model inzicht in de weerstandsfacto-
ren voor elk type staal. Bovendien kan dit model zich automatisch aanpassen aan
plotselinge of geleidelijke veranderingen in het gedrag van het lasproces, dergelijke
veranderingen worden toegeschreven aan machineonderhoud en kleine variaties in de
chemische samenstelling van het staal.

Vanaf Hoofdstuk 3 leggen we de nadruk op technieken die gebruik maken van
patronen om tijdsreeksen te analyseren. We introduceren het Series Distance Matrix
(SDM) framework, waarvan de ideeën en codebasis de fundamenten vormen voor la-
tere hoofdstukken. SDM is een plug-and-play framework waarmee verschillende data-
analysetechnieken gerelateerd aan deMatrix Profile vrij kunnenworden gecombineerd.
Het kern idee van SDM ligt in de erkenning van het nut van de afstandsmatrix als kern-
functionaliteit waarop andere technieken kunnen worden gebaseerd. Op deze manier
kunnen we de traditionele Matrix Profile zien als één specifieke opstelling van SDM.
In dit hoofdstuk wordt ook het Contextual Matrix Profile (CMP) geïntroduceerd als
een nieuwe techniek die past binnen SDM. Waar de Matrix Profile kan gezien worden
als een eendimensionale reductie van de afstandsmatrix, gebruikt de CMP een tweedi-
mensionale reductie. We demonstreren het nut van de CMP voor visualisatiedoelein-
den, waar het trends doorheen de tijd kan blootleggen, en voor anomaliedetectie door
afwijkingen van die trends te vinden.

Vervolgens richt Hoofdstuk 4 zich op het gebruik van de z-genormaliseerde Eu-
clidische afstand als afstandsmetriek in SDM. Aangezien deze metriek erg geschikt
is om de vorm van sequenties te vergelijken, is dit tevens de oorspronkelijke metriek
die werd gedefinieerd voor de Matrix Profile. We onderzoeken de link met de correla-
tiecoëfficiënt, waardoor we afstanden kunnen normaliseren en zo onderling afstanden
kunnen vergelijken tussen sequentieparen van verschillende lengtes. Een ongewenst
neveneffect van deze afstandsmetriek komt voor wanneer tijdsreeksen vlakke sequen-
ties bevatten en er enige hoeveelheid ruis aanwezig is. Aangezien deze twee kenmerken
vrij vaak voorkomen in realistische gegevens, heeft dit neveneffect een grote impact.
Meer bepaald zullen de gerapporteerde afstanden sterk verschillen van de menselijke
intuïtie de optimale werking van SDM-technieken belemmeren. Door de impact van
ruis op de z-genormaliseerde Euclidische afstand in te schatten, kunnen we dit effect
gemakkelijk corrigeren. We demonstreren de voordelen van deze techniek voor drie
verschillende use-cases en datasets, namelijk visualisatie, semantische segmentatie en
anomaliedetectie.

Kennis over herhalende patronen is een waardevol inzicht bij het werken met tijd-
series. Waar de MP en CMP zich richten op het vinden van de meest gelijkaardige
herhalingen in tijdseries, focust een recent werk zich op het vinden van de (top-k)
beste herhalingen over een verzameling tijdseries. In Hoofdstuk 5 breiden we deze
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techniek uit en definiëren we de Radius Profile (RP) als een nieuwe component die
past in het SDM-framework. De RP geeft inzicht in hoe nauwkeurig elke sequentie in
een tijdsreeks een aantal keer herhaald is doorheen een verzameling tijdsreeksen. Het
common-k Radius Profile is nog een andere voorgestelde techniek voor het vinden van
herhalingen bij één enkele tijdsreeks in plaats van meerdere. Deze techniek kan wor-
den gebruikt om de meest voorkomende patronen in een tijdsreeks te vinden, d.w.z. de
sequenties die het best bewaard blijven over een aantal herhalingen.

Waar in de voorgaande hoofdstukken data-analysemethoden voornamelijk als on-
afhankelijke technieken worden behandeld, laat hoofdstuk 6 zien hoe deze methoden
kunnen worden gebruikt als onderdeel van een groter data-analyse systeem. Dit hoofd-
stuk beschrijft een use-case uit het Dyversify project, waar een full-stack data-analyse
prototype werd gebouwd dat data-gedreven machine learning technieken combineert
met kennis-gedreven semantische technieken. Het doel was om automatisch anoma-
lieën of voorvallen te detecteren in gegevens afkomstig van particuliere ventilatie een-
heden. Een dynamisch dashboard koppelt semantisch verrijkte anomalieën met ge-
schikte visualisatiewidgets met behulp van semantisch redeneren, waardoor de werk-
last van de operator wordt verminderd. Via interactie met het dashboard kan de ope-
rator deze anomalieën onderzoeken en aangeven welke anomalieën relevant zijn. De
eerste detecties door dit systeem zijn zogenaamde discords, d.w.z. unieke patronen in
de tijdsreeks die kunnen worden gezien als mogelijke anomalieën. Deze worden ge-
detecteerd door een MP-component die streaming data verwerkt. Wanneer patronen
een tweede keer voorkomen, worden ze niet langer als discord beschouwd. Echter,
als de operator het overeenkomstige patroon als relevante anomalie heeft gelabeld, zal
een patroondetector dit patroon registreren als een relevant voorval. De detectiecom-
ponenten gebruiken dus de bevestigde anomalieën als referentiepatronen om overeen-
komende voorvallen in nieuwe binnenkomende metingen te detecteren. Hoofdstuk 6
beschrijft de overkoepelende architectuur van dit systeem. Het beschrijft hoe gege-
vens ontvangen worden in het Obelisk-systeem, getransporteerd worden met behulp
van Kafka, semantisch geconverteerd worden door de RMLStreamer, verwerkt wor-
den met behulp van het SDM-framework en semantische regelgebaseerde technieken,
en uiteindelijk het dashboard bereiken waar interacties van gebruikers teruggekoppeld
worden naar eerdere componenten. Dit hoofdstuk bundelt ook onze ervaringen met
het combineren van semantische en machine learning technieken.

Hoofdstuk 7 bevat een samenvatting van ons onderzoek en bespreekt mogelijkhe-
den voor toekomstig onderzoek.





Chapter 1

Introduction

“Data is the new oil”. A statement often repeated by business leaders when outlining
their newest business strategy, where they will focus more on gathering and analyzing
data. Data analytics by itself is as old as mankind and was used to learn about the laws
of physics long before the first computers were around. With the rise of computers,
data analytics was able to further mature in research facilities and tech companies.
The big tech companies we know today, such as Facebook, Amazon or Google, can
attribute their success to early adoption of data analytics.

Focusing on the present, we findmore andmore companies incorporating data ana-
lytics into their core business. Data storage has cheapened and cloud provider services
further lowered the risk of initial investment. This has allowed businesses to measure
and store a wider variety of metrics, and has even enabled the rise of a whole new
range of smart devices whose functionality relies on data exchange and analysis, the
so called Internet of Things (IoT). As the amount of captured data that can be analyzed
increases, data processing capabilities have also significantly improved, and continue
to do so. ThoughMoore’s law is starting to reach its limit, hardware will become faster
by exploiting 3D architectures, parallelization and specialisation [1]. On the software
side, both academia and industry continue to find new or improve existing data analyt-
ics techniques. Finally, the human factor remains an important one as well. Here, we
see the increasing popularity of data science resources, communities (e.g.: Kaggle),
and the hailing of data science as the sexiest job of the 21st century [2]. All of these
observations clearly indicate the high expectations and growing importance of data
analytics

1.1 Data Analytics

Data analytics is a broad term that covers a range of practices, in essence data analytics
comes down to trying to make sense of data in some way. Analytics can be subdivided
into four categories, each with their own focus. To highlight the differences between
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these categories, we exemplify each category with the use case of examining black box
data from a crashed airplane.

Descriptive Analytics focuses on knowingwhat is happening in the available data.
This includes understanding every part of a data set, summarizing it to an under-
standable format, and being aware of any changes that are captured in it. Common
techniques are summary statistics, visualizations, statistical methods and data mining,
which are often used jointly and iteratively to refine initial assumptions and adjust
techniques accordingly. It is often useful to visualize data in different ways, as each
different perspective may reveal new findings [3]. Visualizations make the data more
natural for the human mind to comprehend and therefor easier to identify trends. In
fact, visualizations may reveal patterns that are easily missed by investigating statistical
properties [4]. Visualizations are also a great way to highlight differences between sets,
for example, taken over different years. We should note that understanding the data to
some degree is a requirement for each category, though a more lightweight exploratory
data analysis can also suffice in the other cases. In our example use case, descriptive
analytics would focus on mapping and understanding the state of all airplane systems
throughout the recorded flight time.

Diagnostic Analytics tries to explain why one or more events in the data occurred.
This comes down to trying to find the chain of relevant events in the data, the process
is similar to root cause investigations in domains with strict safety regulations such
as healthcare or aviation (though these are typically done through interviews). Sta-
tistical methods such as correlations or data mining can be used to find dependencies
or co-occurring events in the data. Regression methods can be used to find temporal
dependencies in signals [5], whereas anomaly detection can help locate unexpected
behavior that might be part of the event chain and event detection methods can reduce
the amount of data to a more manageable set of concrete events. To emphasize that
techniques can never prove causality, the term Granger causality is typically used in
literature. In the aviation use case, diagnostic analytics tries to find the series of events
that lead to the plane crash.

Predictive Analytics aims to create a model of the underlying system that can pre-
dict system behavior. Though this somewhat implies future predictions, predictions
can equally be used to fill in unknown data of the past or present. A wide range of ma-
chine learning methods can applied here. Regression methods such as linear models,
neural networks or random forests are useful to predict continuous or ordered values,
whereas classification methods such as logistic regression, support vector machines or
clusteringmethods aim to predict discrete categories, i.e. one option from a limited set.
Two major assumptions made by all techniques are that available data is representative
for unavailable data and that relevant metrics needed for the prediction are captured in
the data. In our example, we would obtain a model that captures how failing airplane
systems affect each other, so one could run simulations across multiple scenarios using
this model.

Prescriptive Analytics deals with the best actions to take. This category focuses
on combining business intelligence with insights in order to determine the best suitable
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actions. Techniques that can express uncertainty are especially useful here, as they can
be used for risk analysis where the cost and likelihood of different scenarios is quan-
tified. Examples include timing marketing campaigns, investments, or in our aviation
case, finding the most economical way to prevent future crashes.

While each category has a clear theoretical focus, categories will often overlap in
practice because insights from one category can be reused in another. For example,
the patterns (descriptive) or causalities (diagnostic) found in data can be extrapolated
to future behavior and used as a predictive model. Another common example is how
automated root cause analysis techniques, a common research topic for diagnosing
problems (diagnostic) in complex IoT environments, do this by classifying the most
likely cause (predictive). As a final example, consider how the planning of marketing
campaigns in a new location (prescriptive) also relies on knowing the demography of
candidate locations (descriptive) and being able to predict adoption for each (predic-
tive).

In this dissertation, we touch all four types of analytics, but mainly focus on de-
scriptive analytics methods applicable to time series. But what differentiates time se-
ries from other data?

1.2 Time Series

Most data used in machine learning can be represented in a two-dimensional matrix,
often called the feature matrix. One dimension corresponds the different observations
made, the other dimension represents the different features or attributes that were mea-
sured for that observation. As an example, assume we want to study our driving behav-
ior and collect a dataset of all rides made with our car in the current year. Here, one
observation would describe a single ride. The features would be chosen in function
of what exactly we want to study, e.g. some interesting features could be: time of de-
parture, time of arrival, fuel consumption and the number of passengers. Sometimes,
additional features can be derived afterwards as well. For example, we can derive the
travel time of each ride based on departure and arrival time.

Time series add a third dimension to this feature matrix, the time dimension. This
means we can track a single feature of a single observation throughout time, captur-
ing how the feature evolves throughout the observation rather than being restricted
to a single value1. Coming back to our example, we could record our driving speed
throughout every car ride. Due to practical limitations, we typically use sampling to
get a subset of the data by periodically measuring our feature, where the sampling fre-
quency again depends on the intended use case. Time series can contain continuous
values (e.g. driving speed) as well as discrete values (e.g. the radio station we listen
to). Every feature can be represented as a time series, though not all features evolve
over time. For example, if we assume that any type of passenger exchange indicates

1 Time series are also often defined as a series of instant observations. However, by assuming observa-
tions are non-instant, we better retain the similarity between traditional and time series data.
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Figure 1.1: Feature matrix for traditional data (left) and time series data (right). Features rep-
resent the attributes being measured, and may or may not be correlated, as represented by the
arrows (e.g. humidity and temperature are often correlated). Observations represent different
measurements and are assumed to be uncorrelated (e.g. measurements in different locations).
Finally, the time (or spatial) dimension represents a continuous measurement where measure-
ment values are assumed to be correlated (e.g. the current temperature will be very similar to
the temperature recorded one minute before).

the end of a ride, the number-of-passengers feature will remain constant for the entire
ride, and there is little value to represent it as a time series.

While we use the term “time series”, it is possible to obtains series without using a
temporal dimension. For example, we can obtain series by measuring a feature along a
spatial dimension (e.g. the cross-sectional thickness of a steel plate) or even by trans-
forming object outlines in still images to series [6]. However, most series are temporal
and the term has a strong foundation in literature.

The values in time series observations differ from traditional observations in two
ways. First, they have an explicit ordering and secondly, whereas observations are in-
dependent from each other, the time series values are typically correlated with nearby
values (i.e. each value is similar to nearby values). A summarizing visualization is
shown in Figure 1.1. A wide range of techniques exist to incorporate time series into
machine learning [7], we discuss two main categories, i.e. statistical features and pat-
terns. This dissertation uses both approaches, but discusses pattern-based techniques
more in-depth.

1.2.1 Statistical Features

One common way to incorporate time series data in traditional machine learning tech-
niques is by converting the time series values into statistical features, such as the min-
imum, standard deviation, mean, skewness, and so on. The choice of which statistical
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Figure 1.2: Different window-based feature calculation methods for statistical features µ and
σ. Left: Windows are defined over ranges of the series. This approach is more common when
analyzing series as a whole (e.g.: to find anomalous series). Right: Use of sliding windows.
This approach is used when analyzing the progress of series (e.g.: to predict future values).

feature to use will depend on the target use case. For example, we could convert the
driving speed time series into an average speed and standard deviation if we are inter-
ested in predicting our fuel consumption, or into a maximum speed if we are interested
in predicting our likelihood of getting a ticket. As another example, the time of depar-
ture and arrival could be seen as the minimum and maximum of the “current time”
time series.

Instead of calculating statistical values over the whole series, one can also split the
series into different parts (windows) and calculate statistical values for each part, as
shown in Figure 1.2 (left). This can be done time-wise (e.g. the mean over the first
half and second half of the series), but also based on different criteria. For example,
we could calculate the average driving speed per type of road (e.g. offroad, local road,
highway) we are traversing instead of having a less meaningful overall average driv-
ing speed. One limitation does play a part here, namely that many machine learning
techniques assume that each considered observation has an equal number of features.
This means we have to define the considered windows appropriately, as to not violate
this assumption.

Instead of purely (descriptive) analytics of statistical features over (different) time
series, we can go one step further and also perform predictive analytics within a single
series using those statistical features. For example, given a single time series we can
try to predict the next values, or determine whether the next value is anomalous or
not. A common approach to include statistical features in this case is by using sliding
windows. Here, a slidingwindow typically has a fixed size and contains themost recent
measured values. For example, in regression cases the sliding window will include the
measured values preceding the value to be predicted. This principle is shown in Figure
1.2 (right).

One limitation of most statistical values is that they treat all data points indepen-
dently. In a way, they disregard the information captured in the order in which the
data points occur when applied to time series. Some techniques, like auto-correlation,
can be seen as statistical values that work over ordered data, but also as pattern-based
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techniques, which are discussed next.

1.2.2 Patterns

A different way to incorporate time series in machine learning is by using patterns to
extract information from the series. Here, patterns are short sequences of ordered val-
ues that may or may not (exactly) match a part of the time series. Similar as to how
humans can easily recognise and extract individual heartbeats from an electrocardio-
gram (EGC) signal, automatic techniques can compare and identify patterns in time
series.

To automaticallymatch patterns, we need distancemeasures that capture howmuch
one sequence of values differs from another. Lower distances indicate a better match,
with zero indicating the best possible match. Note that as we use distance measures
rather than distance metrics, the best possible match does not necessarily indicate that
the two sequences are exactly equal). We present a select few of commonly used mea-
sures, though many more exist [8], each having their own use cases:

• The Manhattan distance (also known as the taxicab distance or L1-distance)
simply sums the difference between all points. This measure is suitable for work-
ing with time series where the scale and zero point of the signal are constant.

• The well known Euclidean distance (or L2-distance) equals the root of the
squared sums of the differences. When matching sequences, this means that
larger point-wise differences will have more effect on the resulting distance.
This measure can be used for the same series as the Manhattan distance, but
emphasizes more on extreme differences.

• The cosine distance is based on the dot product of both normalized sequences.
Alternatively, when treating the sequences as vectors, this distance equals the
Euclidean distance between the normalized vectors. An interesting property of
this distance measure is that it disregards the positive scaling of sequences. This
measure allows comparison when dealing with time series where the scale may
vary, for example due to miscalibrated sensors.

• The z-normalized Euclidean distance consists of the Euclidean distance be-
tween the z-normalized (mean = 0 and standard deviation = 1) sequences. This
measure disregards positive scaling and shifting when comparing sequences,
effectively focusing on the shape of both sequences. This measure is suited for
comparing time series where the zero-point and scale may vary, as is common
in biological signals or in cases where sensor drift may arise.

• Dynamic time warping (DTW) is a meta-measure that is often combined with
the Euclidean or Manhattan distance. DTW compares both sequences while al-
lowing non-linear shifts in either sequence as to minimize the resulting distance.
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It can be used when the speed of the measured behavior may vary throughout
time.

Given a specific pattern and distance measure, two approaches to convert series
to features are commonly used. We can slide the pattern over a series, calculating
the distance for each location, and use the minimum of these distances as a feature,
this corresponds to the distance of the best match in the series. When dealing with
predictive analytics, we can also take the distances over the most recent values instead,
as was described for the statistical features.

While it is possible to use traditional techniques by converting time series to fea-
tures, specialised techniques have found other ways to derive insights from series.
Many of these techniques are also pattern-based, and use information such as the lo-
cation and quantity of pattern matches.

1.3 Visualizations & Insight Mining

Many insights related to time series deal in some degree with repetition. Previously
unknown repetitions may reveal an unexpected but interesting structure, while locating
known repetitions can help to validate assumptions regarding the data or underlying
system. The topic of motif discovery investigates how similar subsequences, i.e. mo-
tifs, can be found in large data sets even when these occurrences are not exact matches.
While several definitions are in use [9], we use the similarity-based definition where
a motif is the subsequence that has the best possible matching subsequence elsewhere
in the series, excluding itself and nearby trivial matches. Example applications of
motif discovery include sound matching (such as music or bird songs), image outline
classification and weather prediction. Early motif discovery techniques relied mainly
on indexing the series using symbolic aggregate approximation (SAX) or other lower
dimensional spaces [9]. Later works extended motif discovery in various ways, includ-
ing top-k motif search [10], multidimensional data [11], parallel computation [12], and
mining of consensus motifs, i.e. subsequences that are repeated in a collection of series
[13]. Motif discovery is a broad research topic of which only highlights are presented
here. A more detailed overview can be found in the survey paper by Torkamani and
Lohweg [14].

A more recent branch of research is theMatrix Profile, which also allows for motif
discovery. Given two series (S1, S2) and a subsequence length m, the matrix profile
is a new series of length |S1| −m + 1 where each value is the distance of each sub-
sequence of S1 to its nearest matching subsequence in S2. When considering only
a single series (S1 = S2), this is referred to as a self-join, and trivial matches have
to be taken into account to avoid any subsequence matching a slightly shifted version
of itself. The matrix profile was originally defined with the z-normalized Euclidean
distance measure as many time series from natural sources do not have a fixed scale or
zero point, but later works suggested other distance measures as well [15, 16]. Motifs
can be trivially located using the matrix profile; the top-k motifs are the subsequences
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Figure 1.3: An artificial signal and corresponding (self-joined) matrix profile for a subsequence
length of 100. Low values in thematrix profile indicate subsequences for which a goodmatch can
be found; i.e. motifs, high matrix profile values correspond to subsequences that are dissimilar
from others, i.e. discords.

corresponding to the top-k minima in the matrix profile (taking into account neigh-
bouring trivial matches). Besides most similar subsequences, i.e. motifs, the matrix
profile also captures the most dissimilar subsequences, i.e. discords. Discords are
those subsequences that differ most from any other subsequences and can be consid-
ered outliers or anomalies in the series. Figure 1.3 shows this principle for an artificial
time series.

The matrix profile technique forms the basis of many state-of-the-art descriptive
analytics techniques, further described below, as well as most work presented in this
dissertation. Besides new analytics techniques, many works have introduced variants
that expand on the applicability of the matrix profile as well. Examples of this include
approximate calculations [17], support for multidimensional time series [18], support
for missing data [19] and derived distance measures [8].

While repeated patterns are interesting, slowly evolving patterns may be too. Time
series chains are explained as a temporally ordered set of patterns, where each pattern
is similar to its preceding and following pattern, but the start and end of the chain are
significantly different. Chains may indicate a slow change in the underlying system,
such as machine wear down causing a deviating pattern. Figure 1.4 shows an example
of chains in a gait dataset. They can be found using the matrix profile by looking for
bidirectional paths in the graph that links each subsequence to its best match [20]. A
later work uses a unidirectional path with angular restrictions instead [21].

Another application of pattern matching involves the classification of time series,
where series are divided into distinct classes or categories. Going back to the run-
ning example, one can imagine that a traffic jam manifests itself as a particular pattern
in the measured driving speed of a car. That means we could automatically classify
our recorded car rides as a normal or jammed ride by looking for the proper pattern.
The shapelet classification technique [22] is based upon this principle and consists of
two phases. First, discriminative patterns are mined in a collection of labeled time se-
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Figure 1.4: Application of time series chain discovery on a gait dataset, recorded by a mobile
phone. The chain consists of a series of slowly evolving patterns, highlighted in the top. The
chain can be explained by the phone obtaining a stable pocket position as the subjects walks.
This figure originates from the work by Zhu et al. [20]

ries. Next, a decision tree is created, where at each step a specific pattern is compared
against all subsequences in the series. Later works stepped away from a decision tree
and instead suggested to create a feature matrix consisting of the distances to a set of
meaningful patterns, i.e. a shapelet transform [23]. This generalization allowed the
use of any classic classification method and provided significant better results. Simi-
larly, many new methods have been introduced to mine the shapelet patterns based on
gradient descent [24], evolutionary algorithms [25] or generalized eigenvectors [26].
At first sight, shapelets are a form of predictive analytics. However, they can also be
seen as a form of descriptive analytics, by recognizing that a shapelet classifier dis-
criminates classes using patterns that are interpretable by humans. In other words, the
resulting patterns may prove insightful and demonstrate previously unknown differ-
ences between the different classes.

Time series segmentation is an analysis technique that divides a series into homo-
geneous regions, as shown in Figure 1.5. Consider for example a person wearing an
activity sensor at a gym, where different types of exercises are performed on different
devices. Segmentation techniques could be used to automatically detect the transitions
between the different exercises. FLOSS (fast low-cost online semantic segmentation)
[27] is a segmentation technique based on the matrix profile. It assumes that homoge-
neous segments will show repeated behavior, and splits a series where the number of
repetitions differs most from the expected number.

Visualizations are perhaps one of the most common forms of descriptive analytics.
However, many traditional visualization techniques are not directly applicable to time
series. Multidimensional scaling (MDS) is a popular technique for visualising multi-
dimensional data in a two-dimensional graph. MDS can be applied to subsequences
of a series, but randomly selected subsequences will often result in a generic disc-like
plot because these sequences lack structure and distances carry no meaning, as shown
in Figure 1.6 [28]. If instead, salient subsequences are extracted based on their pair-
wise similarity (using the matrix profile), the resultingMDS plot does provide relevant
insights.
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Figure 1.5: Examples of time series where a sudden behavioral change occurs, resulting in
two homogeneous parts. Each example is a snippet from a larger dataset and is centered on the
change point. Time series segmentation techniques can automatically find this transition. This
figure is adapted from the work of Gharghabi et al. [27]

Figure 1.6: Multidimensional scaling used to visualize a dataset containing hearth beats, each
point represents an extracted subsequence and is colored according to available expert annota-
tions. The lefts visualizes randomly selected subsequences and captures no insightful structure.
The right visualizes salient subsequences selected using a matrix profile based technique. This
figure is adapted from the work of Yeh et al. [28]
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Figure 1.7: Summarizing visualisation of the PAMAP dataset, which contains accelerometer
data of subjects performing various activity. The four mined snippets correspond to a specific
activity and can be used to represent the dataset. This figure is adapted from the work of Imani
et al. [29]

Summarizations are another type of visualisation, where the goal is to extract a rep-
resentative or distinguishing visual for the time series. In the music domain, a common
thumbnailing technique is the extraction of the most repeated excerpt, such as the cho-
rus. One work explains how an Euclidean based matrix profile can be used to find this
excerpt [15]. Time series snippets have been introduced as a more domain-agnostic
approach [29]. The approach works by finding a small number of representative se-
quences, i.e. snippets, that explain the majority of the series. These snippets are then
used as visual summaries, as shown in Figure 1.7. Snippet extraction is based on the
more forgiving MPDist distance measure, which treats two sequences as similar when
they have many similar subsequences [8].

A typical aspect of descriptive analytics is that it is highly iterative. Insights may
lead to more questions or the need to validate former assumptions, a process that is re-
peated until the data is fully understood. Due to this iterative nature, it is often useful to
obtain fast but less inaccurate results to help aim the direction of further investigation.
Anytime algorithms have exactly this property, they produce solutions that become
more accurate as they are given more time to complete. An anytime version of the
matrix profile algorithm is based on a diagonal-wise distance computation and allows
representative results in a fraction of the normal calculation time [17]. Another work
has suggested the use of an annotation vector to refine the matrix profile after it has
already been calculated [30]. An analyst can construct the annotation vector based on
properties of the original signal (e.g. the energy in the signal) or any externally avail-
able knowledge (e.g. timing when the signal was recorded). The annotation vector is
used to shift values in the matrix profile, so motifs correspond to the part of the signal
indicated by the analyst.

The techniques in this dissertation improve existing or allow for new types of vi-
sualization, segmentation, motif mining and event detection. A detailed overview of
the demonstrated insights is provided in Section 1.5. Another valuable type of in-
sight in scope of this dissertation is anomaly detection. When examining a dataset, it
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can also be interesting to find data points that are unexpected and can be considered
anomalous. Anomalous data points may indicate some kind of measurement error, an
error made during the processing of the data, or it may simply indicate a previously
unknown behavior of the system. While anomaly detection can be seen as yet another
aspect of insight mining, the vast research attention it has obtained does validate it as
an independent topic.

1.4 Anomaly Detection

Anomaly detection is a broad research domain with a wide range of applications and
concerns itself with finding things that are, simply put, different. In other words,
anomaly detection techniques seek to identify data instances that do not fit what is de-
fined as normal behavior, or more formally, instances that do not fit the representative
data distribution. Besides being a research area, anomaly detection also plays a major
role in industry, as demonstrated by services like Amazon CloudWatch or Microsoft
Azure Anomaly Detector. As such, anomaly detection has a wide range of applica-
tions domains such as quality control in production settings or machine monitoring for
predictive maintenance. Anomaly detection also plays an important role in everyday
life, though not always apparent, with applications such as spam detection or surveil-
lance. Because of this wide range of applications, anomaly detection has become a
major research domain with a rich history. Still, as collected data continue to grow in
both scale and complexity, anomaly patterns become more varied and challenging to
detect, fueling the need for ever more advanced techniques that focus on more detailed
scenarios.

Anomaly detection methods can be categorised in a number of ways, one interest-
ing categorisation relates to the data requirements for each technique. Supervised fault
detection techniques rely on labeled data, meaning that it is known whether each ex-
ample is considered anomalous or normal. They are commonly used when looking for
specific types of anomalies that are common or have been well documented, such as
phishing mails in spam detection or typical maintenance issues in industrial machines.
Example techniques include classifiers, which assign input values to one of multiple
classes (normal and faults), and expectation-based regression models. However, fault
detection approaches typically suffer from a lack of available labeled data or a high
imbalance between normal and abnormal examples.

Unsupervised outlier detection techniques do not require labeled data, instead they
rely on self-structuring mechanisms and similarities between data points. Outliers may
be the result of measurement errors but may also signify previously unknown behavior.
One common assumption here is that outliers occur rarely, so anomalies can be found
using density basedmethod, where they occur as isolated points, or as distinct instances
using similarity-based strategies. Outlier detection cannot distinguish different types
of anomalies like fault detection, but is more widely applicable to use cases because
labels are not needed.
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Finally, semi-supervised novelty detectionmethods try to combine the best of both
worlds and are typically used when one dataset defines baseline behavior and new data
needs to be scanned for anomalies. Semi-supervised techniques utilize data sets where
a limited set of labels is available, often it suffices to have examples of normal data.
Partition-based classifiers like isolation forests or property-based methods like auto-
encoders succeed in creating a model that can test for normality in unseen data, which
can be used to detect anomalies.

Finally, the term noise detection is also used in literature when finding and re-
moving abnormal values in a dataset before training a machine learning model. Noise
detection is similar to outlier detection, but treats outliers as undesired rather than in-
teresting. Since the presence of anomalous values can degrade the performance of
machine learning models, detecting and removing noise is a common practice when
anomaly detection is not the goal.

Anomaly detection is typically accompanied with a number of practical challenges,
irrespective of the application domain being considered:

1. Rarity: Anomalies are, by their very definition, rare in nature. In general, this
results in highly unbalanced datasets that limits the number of useful techniques
to find them. Evaluation also becomes more challenging, since evaluating a
small number of examples is statistically less reliable.

2. Lack of labels: Supervised techniques require examples of anomalies in order
to detect similar cases. However, labeled data is often not available and labeling
data is often costly for more complex cases. Semi-supervised techniques relax
this requirement and only depend on data containing normal behavior. Still, the
collection of this type of data can remain impossible or non-straightforward for
specific domains, such as those where anomalies can go unnoticed. The lack of
labels also affect evaluation.

3. Dynamicity: Anomalies can become more dynamic as the data becomes more
complex. This means that collecting an exhaustive list of all possible anomalies
is often impossible.

4. Subjectivity: Defining what constitutes an anomaly is a highly subjective ques-
tion that depends on the background and expectations of the observer. It is
closely related to the subtle distinction between outliers (rare events), faults (un-
desired behavior) and events (known behavior). In time series, there can also be
disagreement as to when exactly the anomaly occurs, which has implications in
labeling and evaluation.

5. Context: The surrounding context of a process can heavily influence the re-
sulting measurements. What is considered normal under one specific context
may not be under a different context. This includes a wide range of factors that
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Figure 1.8: Example of a non-time series dataset containing a point anomaly and contextual
point anomaly. Where the point anomaly is a clear outlier, the contextual anomaly can only be
spotted by considering the context information (color/symbol) into account.

may or may not be (directly) captured in the data. For example, computer net-
work security applications may see significant changes between weekdays and
weekends.

1.4.1 Types of Anomalies

Anomalies can be categorized into different types, where some techniques may only
be suited to detect one specific type. These types are strongly related to the shape of
the feature matrix, as discussed in Section 1.2.

1.4.1.1 Traditional Data

If we consider traditional, non-time series data, two types of anomalies are considered:
point anomalies and contextual point anomalies, an example of each is visualized in
Figure 1.8 and Table 1.1. Point anomalies are observations that fall outside the data
distribution of the majority of the data and can be recognized by one (uni-variate)
or a combination of multiple (multi-variate) feature values that are outliers. They are
often easy to spot using visualizations in low-dimensional data sets or simple statistical
methods such as histograms.

Contextual anomalies are observations whose feature values fit nicely in the global
data distribution, but are anomalous when also considering their context information.
While Figure 1.8 uses two discrete context types, contexts can be very complex in
practice. Examples include the effect of the time of the year when observing outdoor
temperatures, where context is cyclical and non-discrete, or the different rooms in a
hospital where equipment is monitored, where context can only be expressed as the
similarity between different setups.

A schematic representation of these anomaly types can be seen in Figure 1.9. Note
that all anomalous values span across the features axis. It would also be possible that
anomalies span across the observation axis, consider for example the situation where
at one point during the recording process, the measuring tool for one specific feature
begins to malfunction. However, a common assumption is that all observations are
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Context Param X Param Y
A 5.0 15.0 Point anomaly
A 14.1 16.3
A 15.5 14.7
A 23.6 23.6 Contextual Point Anomaly
B 23.8 25.4
B 25.6 23.8

Table 1.1: Feature matrix of an extract of the data visualized in Figure 1.8. The point anomaly
can be easily spotted by the X value that falls outside regular range. However, the contextual
point anomaly can only be spotted if we compare observations against observations of the same
context.
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Figure 1.9: Schematic representation of the feature matrix with different anomaly types in tra-
ditional non-time series data.

considered independent from each other, meaning that this situation would simply be
considered as multiple point anomalies. We can use this representation to compare the
differences with anomalies in time series data.

1.4.1.2 Time Series Data

As mentioned before, working with time series implies that observations can be con-
sidered as measurements over a certain range (spatial or temporal). This is translated
as a third dimension in the feature matrix, and means that we can differentiate addi-
tional types of anomalies. This is shown schematically in Figure 1.10, or in Figure
1.11 for a collection of fictional time series.

The first type is the point anomaly, which is very similar to the traditional type.
In the context of a time series, this is a single value in a series that is anomalous.
Point anomalies can typically be found using the same methods as for non-time series.
Multivariate point and contextual point anomalous are also possible, but are less com-
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Figure 1.10: Schematic representation of the feature matrix with different anomaly types in
time series data. For brevity, we omit multivariate and contextual variants.
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Figure 1.11: Four time series demonstrating different anomaly types. Series 1 shows normal
behavior. Series 2 contains a point anomaly, series 3 contains a collective anomaly and series 4
is an outlier time series with respect to the other 3 series.

monly addressed in literature [31]. The reason for this might be that time series often
originate from automated and continuous high-resolution measuring processes, so the
chance of a single outlier point is very small.

On the other side of the spectrum, we have the outlier time series, where an entire
series is considered anomalous. This type of anomaly detection can be useful when one
has a collection of time series that describe a common system but may contain series
that do not belong in that collection. In this case, an outlier time series may be due to
a mislabeling or a failed sensor. Again, multivariate and contextual group anomalies
are possible, though research on this type of anomalies is still relatively limited [31].
Two possible explanations could be the rarity of this type of error, or the fact that more
simple approaches suffice to detect this type of data problem.

Finally, collective anomalies (also known as subsequence anomalies or group
anomalies) represent consecutive values in a series that together form an anomaly, even
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though individual values may valid. As an example, consider a seasonal signal where
one repetition is left out. Collective anomaly detection, including multivariate and
contextual variants, is especially relevant for industrial applications, where services
or machines are continuously monitored. Note that some methods to detect collective
anomalies may also be useful to detect point anomalies. Consider for example the sec-
ond series in Figure 1.11. While this series contains only a single anomalous value, it
also forms a distinct pattern with neighbouring values.

1.4.2 Anomaly Detection Strategies
Alternatively, it is interesting to categorize anomaly detection algorithms by their strat-
egy. Fourmajor strategies can be considered [32]: rule-based, case-based, expectation-
based and property-based.

1.4.2.1 Rule-based Methods

Rule-based methods qualify data by executing explicit or implicit rules. Domain ex-
perts often have a good feel about the behavior of the considered system and what can
be qualified as normal behavior. This knowledge can be converted to explicit rules,
either through direct implementation in the detection system, or indirectly through a
rule-based reasoning system such as Drools2 or semantic reasoning. Alternatively,
rules can be derived from data using supervised classification techniques such as de-
cision trees or association rule mining. Rules have the potential to be interpretable,
which is a desired trait in many domains. However, rule-based methods will often be
incomplete, as not every scenario is readily available to domain experts or present in
data. As a collection of rules grows, management becomes a burden since rules may
overlap or conflict. Finally, rules may be less suited for dynamic domains, where the
definition of normal gradually changes, due to their rigid nature.

1.4.2.2 Case-based Methods

Where rule-based methods gather or find rules to differentiate abnormal from normal
behavior, case-based methods look for example reference cases to make this decision.
New data is classified based on the similarity with these reference cases. Case-based
systems can become more accurate over time as more different cases are ingested and
annotated by a user, provided that feedback is accurate and relevant. The selected sim-
ilarity measure has a big impact on the performance. It can be made to accommodate
a wide array of complex data types, though tweaking the distance measure for opti-
mal results is not straightforward and may prove challenging. One other downside of
this method is computational complexity, as there is no single streamlined model to
classify the data. Example techniques include nearest neighbor techniques, signature-
based techniques and pattern-based techniques like the matrix profile.

2 https://www.drools.org/

https://www.drools.org/
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1.4.2.3 Expectation-based Methods

Models using an expectation-based strategy look for anomalies by modeling the mon-
itored output under normal conditions. For example, any regression method can be
used to predict a specific feature that is present in the data. When the difference be-
tween predicted and observed values is too large, an anomaly is reported. Probabilistic
techniques such as Gaussian mixture models, that determine the distribution of valid
values are also straightforward to use, andmight be more applicable for anomalies con-
cerning correlated output variables. By estimating the distribution of specific features,
it is straightforward to determine values with low probability as anomalies. Other tech-
niques, like Gaussian processes, combine regression with uncertainty ranges. Overall,
this strategy relies on the ability to fit a proper model over the data. The abundance of
regression techniques, ranging from simple linear models to complex long short-term
memory (LSTM) neural networks, shows that finding a proper technique is not always
straightforward. Furthermore, selecting a proper anomaly threshold is application de-
pendent, and requires either expert knowledge or enough anomalous examples to make
an informed decision.

1.4.2.4 Property-based Methods

Property-based methods are based on the assumption that normal data exhibits certain
latent properties. Unsupervised property-based methods are trained on data that is
known to contain no anomalies and form a model of normality. New data is evaluated
by seeing how well it fits withing the learned model. The best known methods under
this category are reconstruction-based methods such as principal component analy-
sis or auto-encoders. These dimensionality reduction techniques effectively create a
way to compress data, while also being able to recreate the original data from this com-
pressed formwith a minimal error. Because the compression was learned using normal
data, it will work as expected for new normal data, but will result in a high reconstruc-
tion error for anomalous data. Supervised property-based methods, like (deep) neural
networks, learn to distinguish discriminative patterns that can be used for classifying
different types of anomaly. The challenges for property-based methods remains in
finding the best suited properties and determining the specific criteria for flagging an
anomaly.

1.5 Chapter Overview

This chapter provided a high level overview of different types of data analytics, anoma-
lies and anomaly detection approaches. This background is used to better frame the
challenges tackled in the following chapters, as discussed next. Figure 1.12 summa-
rizes the chapter topics and highlights how the chapters are related to one another.

Chapter 2 proposes an innovative expectation-based model to detect anomalous
welds during a specific stage in the steel production process. Many of the common
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Figure 1.12: A schematic overview showing the link between the different chapters.

challenges present in industrial settings apply here, including a lack of labels and
changes to the underlying system, which we can observe through descriptive analyt-
ics. Existing methods are based on a collection of statistical models that are slow to
react to these changes. The proposed method captures the dynamics of the system in
a single interpretable model that adapts faster, resulting in less false positive detected
anomalies, while still using the same statistical features.

Starting from Chapter 3, the focus shifts to the Swiss army knife of time series
data analytics, i.e. the matrix profile. Many of the analytics that were mentioned can
be based on or derived from this technique, making this technique a vital tool for any
analyst. However, analysts are limited in their ability to apply this technique or its many
possible variations described in literature, this is because different techniques are im-
plemented independently and are therefor hard to combine or customize. This chapter
introduces the series distance matrix framework as a way to freely and efficiently com-
bine various distance measures with the various matrix profile related techniques. This
chapter also introduces the contextual matrix profile as an example extension based on
this framework. The contextual matrix profile is a new technique that can be used for
descriptive analytics such as visualizations between two series and can be used to find
contextual temporal anomalies.

The flexibility that the series distance matrix framework brings, open many options
for data analytics by freely combining distance measures and techniques. Chapter 4 fo-
cuses on the most often used distance measure in matrix profile related works, i.e. the
z-normalized Euclidean distance. This measure can be used to compare the shape of
subsequences, irrespective of scaling or translation, which makes it useful in applica-
tions with natural signals. However, this measure is quite unintuitive for noisy signals
lacking distinctive shapes where the noise effectively determines the shape of the sub-
sequences. Because these types of signals are common in industrial environments,
a method is suggested to negate the detrimental effects of noise. This improves the
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applicability and utility of this distance measure, as demonstrated on an case-based
anomaly detection case and two data descriptive analytics cases: segmentation and
visualization.

Most data analytics techniques presented so far relate to one or two time series.
Consensus motif mining is one technique that finds repeating subsequences within a
larger collection of time series. Chapter 5 introduces the concept of the radius profile,
a derived series that can be used to easily extract consensus motifs, similar to how the
matrix profile can be used to extract motifs. In further likeness to the matrix profile
which has been used for many analytical techniques, the radius profile may provide
a foundation for further multi-series techniques. Furthermore, this chapter also in-
troduces a variation of the radius profile, to be used for finding patterns that are well
preserved across several repetitions irregardless of where they occur, and which can
be used on one or more time series.

Descriptive analytics are most useful when exploring a new problem domain. In
contrast, the situation in industry domains is often more mature as expert knowledge
is more readily available. While expert knowledge is vital, it is seldom complete, leav-
ing a gap that can be filled by data driven techniques. Chapter 6 discusses a system
architecture where rule-based techniques based on expert knowledge and case-based
anomaly and event detection are applied side-by-side. As data is ingested, events are
automatically detected and visualized by a dynamic dashboard that assists the user in
finding proper visualizations. As the user interacts with the dashboard, feedback is
looped back to the detectors to further improve utility.

Finally, Chapter 7 concludes the work of this dissertation and suggests possibilities
regarding future work.
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Chapter 2

An Incremental Physics-Inspired
Current Regression Model for
Anomaly Detection of Resistance
Mash Seam Welding in Steel Mills

While Chapter 1 divides analytics into four different categories with different focuses,
some topics naturally bring several of these categories together. Quality control in
production industry is one such topic. Descriptive analytics are often a prerequisite, as
data needs to be fully understood so a strategy for control can be setup. Next, predictive
analytics can be applied to estimate quality using the available data and business rules
will determine how to use this information as part of prescriptive analytics.

This chapter demonstrates this amalgamation of analytics for a quality control use
case originating from the steel industry. Specifically, we focus on the welding of steel
plates in the annealing line, where various time series are recorded during the welding
process. In a first stage, descriptive analytics reveal some shortcomings in the data cap-
turing methods and allows us to make an informed decision to focus on weld current
prediction. Next, we create a model that accurately predicts weld current (predictive
analytics). By using a gray-box model, we are even able to gain insight into the un-
derlying process (diagnostic analytics). Finally, the model is used to detect unreliable
welds, which are rewelded to minimize the risk of weld breaks (prescriptive analytics).

My contributions can be summarized as follows:

1. Proposal of a fully interpretable regression model for weld current with similar
predictive power as non-insightful state of the art techniques.

2. An incremental version of this model which outperforms state of the art, because
it can adapt more quickly to both minor and major changes attributed to machine
maintenance and variations in steel composition.
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Abstract Annealing and galvanization lines in steel mills run continuously to maxi-
mize production throughput. As a part of this process, individual steel coils are joined
end-to-end using mash seam welding. Because weld breaks result in a production
loss of multiple days, non-destructive tests are used to detect and replace poor quality
welds. Here, statistical tests are most common as they use data readily available from
the welding machine and require no specialised or hard to install equipment. How-
ever, these models do not provide insight into the underlying process and are slow to
adapt for changes caused by machine maintenance or varying material composition.
We developed a welding current prediction model that uses the same data as analyt-
ical models, but is based on known physical laws. In this work we detail our model
and show evaluation results using industrial welding data collected over a period of 15
months. Our incremental model outperforms statistical models due to its rapid adapt-
ability to changes over time. Our model is straightforward, insightful towards experts
and resulted in two thirds less rejected welds on our data, which contained shifts in the
welding current attributed to maintenance.

2.1 Introduction

At one point in the steel sheet production process, sheets are annealed to increase
ductility. To maximise production throughput at this stage, coiled sheets are welded
end-to-end to form a continuous steel sheet that is pulled through the annealing fur-
nace at a constant rate, after which the individual sheets are again cut out and coiled.
Mash seam welding (also known as narrow lap welding) is used to weld the steel coils
together. Here, the ends of two coils are overlapped over a very short distance. Next,
two electrified cylinders roll over this seamwith high pressure. Due to the electrical re-
sistance of the metal, the steel heats, softens and can be mashed together by the rollers.
Shortly after the welding cylinders, two planning wheels follow to further flatten the
weld, completing the process in no more than 30 seconds.

If a weld breaks while passing through the furnace, the sheet becomes jammed
and the production line has to be stopped. To restore the line, workers have to enter the
furnace after it has been cooled and vented, exposing them to a high-risk environment.
As the downtime typically lasts multiple days, it also incurs major costs for the oth-
erwise continuous production line. In an effort to avoid weld breaks, each new weld
is inspected by the operator. Because manual inspection is subjective and somewhat
hindered by the machine hardware, the operator is typically supported by an automatic
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system that produces a quality score for each weld. If the operator finds the weld
unsatisfactory, they cut out the weld and repeat the welding procedure. Because the
annealing furnace has a constant throughput, the time for (re-)welding and inspection
is limited and only one or two re-welds can be made without stopping the production
line.

Many factors influence weld quality. Most critical are the settings used by the
welding machine, such as the welding pressure, voltage, speed and others. As these
settings differ depending on the properties of the steel being welded, they are bundled
into so-called welding programs. Because welding programs are well tested before
being put in use, they are seldom the cause of poorwelds. Factors related to thematerial
(such as thickness deviations or surface pollutants) or related to the welding machine
(such as alignment errors or residue on the weld wheels) are more common, but hard
to pinpoint.

Our work is structured as follows. First, we give an overview of weld quality as-
sessment techniques in Section 2.2. Section 2.3 describes the data we used for our
experiments and evaluations. We describe our base model in Section 2.4, and extend
it to an incremental model in Section 2.5. Finally, we conclude our findings in Section
2.6.

2.2 Related Literature

Works discussing quality monitoring exist for all types of welding: laser welding [1],
arc welding [2], spot welding [3, 4], resistance seam welding [5, 6, 7] and mash seam
welding [8, 9]. Here, mash seamwelding is a type of resistance seamweldingwhere the
overlap between welded sheets is minimal [10]. Furthermore, resistance seam welding
can be seen as a series of (overlapping) spot welds [7]. Though the other welding tech-
niques use different principles, quality assurance techniques are somewhat transferable
over all types of welding and are mainly chosen in function of restrictions imposed by
the intended use case.

While destructive testing such as the Erichsen cupping test [11] can be used to
acquire detailed insights in general welding practices, non-destructive testing is more
interesting as it can be used for production quality control. Non-destructive testing
includes methods based on external tools such as acoustics [2, 3, 12], Eddy currents
[9, 13], radiography [14, 15], temperature [5] and visual checks, as well as checks
using data from the welding process itself such as dynamic resistance [3, 4] or the
monitoring of welding parameters [3, 4, 5].

Surprisingly, almost all documented cases of the steel production industry use pa-
rameter monitoring techniques. This can be somewhat explained by the restrictions of
the continuous production process. For example, the use of acoustic methods may be
unreliable in the noisy factory setting [16]. One specific work does focus on acoustics
for mash seam welding for galvanizing lines, but only evaluates a prototype in a lab
settings [12]. Radiography techniques require a specialised setup that may be diffi-
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cult to include in a production line that was not designed for it, and may additionally
introduce specific safety implications [16]. Other techniques may be similarly hard
to install, or affected by the high electromagnetic influence of the welding machine
[3]. Furthermore, some techniques require labeled examples of weld defects which
requires additional labeling effort. The low number of bad welds in continuous lines
further complicates data gathering as well, resulting in extremely unbalanced datasets
and creating a need for data augmentation [15].

Works tracking weld parameters generally report weld speed, pressure, power and
temperature as most influential for weld quality [7, 17]. Additionally, a strong con-
nection between temperature and power has been reported, meaning it might suffice to
utilise only one of these signals [7]. The use of parameter checks can be divided in two
main categories. The first category focuses on the pattern of the signal throughout the
weld, where a high variation is indicative of a bad weld [1, 3, 6]. The second category
focuses on the values of the signal. Here, weld values are compared to similar previous
welds and abnormal values are flagged as bad welds [3, 4, 5].

Four publications specifically focus on the same use case as our work, i.e. weld
quality for continuous lines in steel mills. All were developed and deployed at the
ArcelorMittal site in Asturias, Spain. In the first work [17], the average temperature
and current of each weld is compared against historical welds of similar welding pro-
grams. Using the outer 1 and 5 percentile values as reference, a score is calculated
for both signals. These scores are aggregated and used to classify the welds. The next
work [16] uses a pre-filtering check to find operating errors in setup voltage, speed
and pressure using historical data. Next, weld temperature values are assigned an as-
sessment score (based on the most recent welds in the same welding program), sorted,
and the 10-percentile value is used as a score. This approach comes down to checking
how many datapoints fall below or above a threshold defined by historical data. The
third work [8] combines and expands the previous two. For the speed, welding pres-
sure, flattening pressure, temperature and current signals, three assessment scores are
calculated based on the magnitude, slope and noise. Again, the score mechanism is
defined per welding program and uses four percentile based thresholds calculated on
the last N welds. All assessment scores are aggregated and compared against an expert
defined threshold to obtain a final classification. The most recent work [18] uses sta-
tistical features that are taken from six different signals, as well as several geometrical
and chemical features of the steel coils. These features are transformed so they follow
a normal distribution. Univariate and multivariate Gaussian models estimate the prob-
ability of the features for each weld, probabilities lower than a specified threshold are
flagged as bad welds. Notably, this approach does not use separate models per weld-
ing program. Their experimental setup did require high computational power and was
performed using a high-performance computing facility.

In this work, we present a novel way to estimate the expected weld current, using
the weld program settings. Our model works incrementally, i.e. it can adjust for un-
derlying trends caused by maintenance or material variations. As such, our method is
compatible with any of these four aforementioned works by utilising the estimation in
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the assessment calculation for the welding current. Of course, applying our suggested
method to additional features is also possible, though this is not in scope of this work.

2.3 Data Description

Our data originates from the welding machine used in the continuous annealing and
galvanization line of ArcelorMittal Belgium and spans a period from March 2019 up
to August 2020. For each weld, a record was made of the metadata of both coils,
setup welding parameters, used welding parameters, as well as statistical values for all
recorded welding measurements. Metadata included thickness, width, material type,
and the identifier of both coils, as well as a timestamp. Setup parameters include all
settings for the welding machine, as defined by the selected welding program, such
as weld speed, machine voltage, welding pressure, planning pressure, and settings for
the overlap of both coils. Used parameters are the settings effectively used for the
welding process, these match the setup values unless the operator has intervened. The
recorded values encompass everything measured during the actual welding process,
such as weld speed, pressures, current, temperature, and others. During the welding
process, these features are sampled at a 50Hz rate and sent to the process computer.
Here, the part of the signal corresponding to the actual weld is extracted and used to
compute statistical features such as the average, median and standard deviation.

As the data collection process is fully automated, weld tests and welds made during
maintenance periods are also included. Unfortunately, due to the way the data collec-
tion worked, records for these welds turned out to be unreliable due to a software flaw
where data of new coils was loaded before rewelding was completed. As there was no
feature available that described the type of weld (i.e. normal, reweld or weld tests),
we used various sanity checks and data originating from other parts of the production
line to filter out welds where records may have been incorrect. For ease of evalua-
tion in later experiments, we also removed any welding programs where less than 10
welds were present in the data set. After filtering we obtained records for 19910 welds,
comprising over 111 different welding programs.

During preliminary data analysis, we discovered two peculiarities in the data. The
first one is related to the welding current, and is visualised in Figure 2.1. This fig-
ure shows the median measured welding current for all welds made using one specific
welding program. While we see slight trends throughout time which might be ex-
plained due to slight changes in the chemical properties of the steel over time [17], two
large jumps stand out. The first jump (September 2019) corresponds with a mainte-
nance of the welding machine, where a copper conductor was replaced. The second
jump (March 2020) corresponds to another maintenance period, though no parts were
replaced. After discovering the first current jump, a new copper conductor was ordered
and installed in July 2020 to correct this anomaly, though without any observable ef-
fect. In order to take these jumps into account, we added amaintenance period feature
to all welds, indicating to which timespan they belong, as shown in Figure 2.1. As
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Figure 2.1: Median welding currents for a single welding program. Besides minor localized
trends, there are two major jumps visible. The first jump coincides with the replacement of a
welding machine component, while the second jump has no clear explanation. A later mainte-
nance (July 2020) to replace the same part and correct the first jump has no visible effect. We
utilise the maintenance period information in the first version of our model.

no rise in the number of rewelds or broken welds was noticed, the question remains
whether this effect is due to changes in how the current is measured, or whether the
welding current effectively dropped without affecting weld quality.

We discovered a similar peculiarity for the measured welding temperature with a
higher frequency rate, sometimes as short as two weeks, which are probably related to
slight changes in position of the sensor. Because the temperature measurements were
unreliable, they are not considered in the remainder of this work.

While imperfect data collection and unexplained data anomalies are undesired,
they are not uncommon. Instead, techniques that can deal with these challenges need
to be found. As we will show later in this work, our technique can adapt to changes
such as those described here, while still alerting operators of major behavioral changes.

2.4 Current Prediction Model

The method described in this work started from a desire to improve the interpretability
of the weld quality system. At the time of writing, ArcelorMittal Belgium uses a simi-
lar weld quality system as described for their Spanish site, where aggregated measure-
ments are compared against historical welds made using the same welding program.
This approach works, but provides no insight as to why the historical records are what
they are. An insightful model is useful as it allows engineers to have more trust in the
method. Furthermore, any insights may help to understand other parts of the welding
process. After initial experiments using linear models, we found that a model based
on known physical laws provided good prediction capabilities.

2.4.1 Physics-Inspired Model

Our model is based on two physical laws. The first is the well known Ohm’s law,
shown in Equation 2.1, which specifies the connection between a voltage V (measured
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in Volts), a current I (Amperes) and a resistanceR (Ohms). In the welding process, the
voltage is determined by the voltage setting (a value in the range [0..100]) as specified in
the welding program. The resistance represents the combined resistance of the welding
machine, the steel plates and any contact resistance.

I = V

R
(2.1)

The second law we utilise is Pouillet’s law, shown in Equation 2.2. This law gives
the resistance R of a material in function of the contact surface A (in square metres),
the length of the material l between both contact points (metres), and the resistivity ρ of
the material (Ohm metres). We use this formula to estimate the resistance of the steel
coils during the welding process. Note that Pouillet’s law describes an ideal case with
uniform contact between the conductors and the material, which is certainly not the
case when using round welding wheels, but we found that incorporating this formula
worked well in practice.

R = ρ
l

A
(2.2)

The resulting model, which we will use for weld current prediction, is shown in
Equation 2.3. Here, Î is the prediction of the measured current, Vout is the voltage
applied according to the welding program, Rmach is the combined resistance of the
welding machine and welding wheels (which is affected by the maintenance period)
andRcoil represents the resistance created by the coils. The coil resistance is estimated
using a resistance factor for the type of steel ρ, the thickness t of the coil, the surface
created by the weld wheelA and a linear correction factorB in function of the welding
pressure pweld.

Î = Vout
Rmach +Rcoil(head) +Rcoil(tail)

Rcoil(x) = ρ(x)t(x)
A+ pweldB

(2.3)

2.4.2 Training the Model
At this point, the prediction formula still contains many unknown terms. We could try
to measure or estimate these terms, though this proves difficult in practice. For exam-
ple, the resistance factor of steel could be measured outside of the welding process,
but this would neglect the effect of the high welding temperature on the resistance.
Instead, we determine suitable values for all model variables using gradient descent, a
technique commonly used for training neural networks.

We implemented the formula from Equation 2.3 in a TensorFlow [19] model, and
defined trainable variables for the unknown terms in the formula. These terms are:
Vout (a non-linear mapping that we discuss in the next section), Rmach (a scalar or
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Figure 2.2: Mean squared error (MSE) andmean absolute percentage error (MAP) during train-
ing for the experiment described in Section 2.4.4. The sudden jump corresponds to stabilization
of the B parameter.

vector, depending on the experiment setup), ρ (a vector with one value per type of
steel considered), A (a scalar) and B (a scalar). This resulted in a model with at most
24 trainable parameters.

We initialise the model using rough estimates for all trainable values and use Ten-
sorFlow’s Adam optimizer to minimize the prediction error on training data. We se-
lected this optimizer as it is well established in the Tensorflow community and provides
good performance without the need for extensive parameter tuning. We found a learn-
ing rate of 7.5 × 10−4, epsilon (a small constant for numerical stability) of 0.1, and
the mean squared error as optimisation metric worked best, even though we will eval-
uate mainly using the mean absolute percentage (MAP) error, as this error value is
more interpretable. The model converges after around 30000 epochs, which takes less
than an hour on a moderate desktop (Intel i7 920, 6GB RAM). The training process is
visualised in Figure 2.2.

2.4.3 Modeling the Output Voltage

The welding voltage is actually a non-linear function of the value specified in the weld-
ing program. This is because the setup value actually defines the range during which
the welding thyristor connects the voltage (a rectified sinusoidal signal), as shown in
Figure 2.3 (Left). Based on this, the theoretical output voltage can be calculated using
the formula given in Equation 2.4, where s represents the starting angle, defined by the
setup value Vin.

Vout ∝
∫ π

s

sin x dx (2.4)

However, we found measurements made during welds deviated from theoretical
values, which can be attributed to the inductive properties of the welding setup. We
experimented with multiple methods to model the output voltage, including variants of
Equation 2.4 that better resembled our measurements. However, we obtained the best
results using 11 reference points, spread uniformly over the range of setup values. For
these points, we trained the corresponding output voltages as described in the previous
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Figure 2.3: Left: Visualisation of how setup voltage Vin determines the period during which
the circuit is completed by the thyristor, passing the voltage. Right: Theoretical mapping of Vin

to Vout versus the values obtained by training reference values in our model. Only 4 out of 11
values are shown, as all welding programs use values within this range.

section. Remaining setup voltages are mapped to output voltages using linear inter-
polation using these 11 reference values. This way, reference voltages affect a range
of input values, which helps to prevent overfitting and keeps the number of trainable
parameters low. The difference between the theoretical and learned output voltages is
shown in Figure 2.3 (Right).

2.4.4 Evaluation - Predictive Power

In this first experiment we validate that the physics model is able to correctly model
the welding current. Additionally, we introduce the average-based model, which we
use as a baseline model throughout this work. We train both models using a common
methodology for regression problemswhere we determinemodel variables using train-
ing data and evaluate on test data. We show both models have a similar performance,
which is mainly interesting as a reference point for the later experiments.

We split the available weld data in train and test data following a 80/20 ratio and
keeping the ratio of weld programs in both sets similar. We trained our model as
described in Section 2.4.2, with Rmach defined as a vector of length 3, one value per
maintenance period.

The average-based model is a second current prediction model based on state of
the art literature. While no work focuses specifically on welding current prediction,
most works similar to our use case use statistical methods to compare weld signals (in-
cluding current) to determine weld quality [8, 16, 17, 18]. Based on these, we define
the average-based model as a model that stores a single prediction value per welding
program, i.e. the average current of the training welds made using the corresponding
welding program. Additionally, we enhance this model with the maintenance period
feature, as we did for the physical model. The resulting model has one trainable param-
eter per welding program per maintenance period, totalling at 325 parameters for our
data (this is not a multiple of three since not all programs were used in each period).
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Physical Model Average-based Model
Train MSE 11 544.88 11 090.66
Train MAP 1.04 1.02
Train Reject (%) 2.7 2.5
Test MSE 10 844.92 10 800.81
Test MAP 1.01 1.01
Test Reject (%) 2 2.3

Table 2.1: Prediction errors in mean squared error (MSE), mean average percentage error
(MAP) and percentage of rejected welds for the first version of our model versus the average-
based model. Welds were rejected if the difference between measured and predicted current was
higher than 3%. We see that the predictive power of both models is similar.

We use the same train/test datasets for evaluating the average-based model as we did
for the physical model.

Table 2.1 shows the prediction errors for both models. We see that both models
have a similar performance, with the physical model having a slightly higher error on
the training data. Overall, the predictions are very good, with an average prediction
error close to one percent. Of course, the MSE and MAP errors give no insight as to
how many welds would be rejected using both models. To do this, we set a prediction
error threshold of 3 percent, which was advised by a process engineer. This means
that any weld where the difference between predicted and measured welding current is
greater than 3 percent would be rewelded. Table 2.1 confirms that both models reject
a similar number of welds.

At this point, we have shown that our physical model has a similar performance as
the average-based baseline model. However, the physical model is fully explainable
and uses less than a tenth of the parameters of the average-based model. In the next
experiment, we further validate our claim that our model is correct from a physics point
of view, and can therefor be interpreted.

2.4.5 Evaluation - Physical Soundness

In this experiment, we test whether the current jumps shown in Figure 2.1 can be ex-
plained using only the machine resistance parameter. We first train the physical model,
i.e. all model parameters, using all welds from a single maintenance period P1. Next,
we adjust the trained model to predict welds from a different maintenance period P2.
As we assume the difference between maintenance periods is caused by changes to the
machine resistance, it should suffice to update only this single model parameter. We
verify this by randomly selecting a (small) number of welds from P2 as training data
and updating the machine resistance parameter. Using this updated model, we predict
the current for all remaining welds in P2.
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Figure 2.4: Evaluation results (averaged over 10 runs) where we trained the physical model on
one maintenance period P1, updated the machine resistance parameter using a small number
of welds from a different period P2, and predicted all remaining welds of P2. The average-
based model was trained using only P2. We see how the prediction error converges to that of
the average-based model, indicating that tweaking the machine resistance parameter is in fact
sufficient to reuse the model across maintenance periods.

We compare performance against the average-based model. Because the average
model would actually be at a disadvantage if it retained data from P1 to predict P2,
we assume the average model only uses the available data from P2. Additionally, we
select the training data for this model in such a way that all welding programs are
equally represented. While this does inflate data requirements disproportionately, it
gives the best possible prediction capability, which is the focus of this experiment.

We repeated the experiment ten times, averaging the results. The results are shown
in Figure 2.4, where we see how the physical model achieves good predictions after
updating using as little as 50 welds. This confirms that all model parameters can be
reused across themaintenance periods. The results seems to hint that the average-based
model stabilises using fewer welds, but actually the opposite is true, as the actual weld
count should be multiplied by the number of welding programs. We should note it is
difficult to determine the number of welds required for reliable predictions when using
randomly sampled data due to the welding program imbalance in the data, as the effect
on the prediction score will be larger if more commonly used welding programs are
sampled. A comparison for a more realistic setting can be made using the experiment
in the next section.

In the next section, we further extend our model to automatically update the ma-
chine resistance parameter, so it can be more easily deployed in a production setting.

2.5 Incremental Current Prediction Model

In the previous section, we have explained how the physical model uses less internal
parameters and is more understandable for experts, while still having similar predic-
tion results as the average-based model. Nevertheless, the model would still be difficult
to implement in a production setting. In the previous experiments we have used the
knowledge of the transitions either as a feature or as a trigger to retrain the model, but
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this would not be possible in a real production setting. We could act reactively, i.e.
once a transition is suspected, a data scientist would need to confirm this suspicion
and retrain the model, and the new model would have to be updated on the process
computer. Because such interventions cannot be planned ahead, several days may pass
before the model is eventually corrected after a transition. Alternatively, we could pe-
riodically retrain the model, though this is somewhat complicated as the predictions
are coupled to the process computer, which is not suited for the specialised training
process. Furthermore, as we will show in this section, local temporal trends are bet-
ter captured by a dynamic model. Next, we present a simple approach to update the
resistance parameter of our physical model in an effective way.

2.5.1 Updating the Model
Updating the machine resistance parameter in the model involves two mechanisms.
First, we have to determine the value that we want to evolve towards. Secondly, we
need to update the value in a suitable manner. The first part is straightforward and is
shown in Equation 2.5, which we derive from Equation 2.3. Here, we use the measured
current I of each weld to calculate the ideal machine resistance R̂mach, i.e. the value
that would have predicted the welding current perfectly.

R̂mach = Vout
I
−Rcoil(head)−Rcoil(tail) (2.5)

Next, we use R̂mach to update the resistance value in the model using an exponen-
tial smoothing function, as shown in Equation 2.6. Here,R′mach represents the updated
value, Rmach the old value, and α is a value in [0 . . . 1]. By updating the model in this
way, we minimize the effect of high-frequency noise while still following the underly-
ing trend. Alternatively we could use a sliding average over the last N values, but by
using exponential smoothing we effectively put more emphasis on recent values.

R′mach = (1− α)Rmach + αR̂mach (2.6)

2.5.2 Evaluation
In this last experiment we want to fully capture the effects of underlying temporal
trends. As such, we predict all welds in chronological order, as would be done in a
production setting. We assume all welds in the first maintenance period (4679 welds)
are available for training purposes, and perform a warm-up run for all models by pre-
dicting all welds from this period. We only report errors for the unused welds of period
2 (9942 welds) and 3 (5289 welds).

All model parameters (except α) of the incremental physical model were deter-
mined using the training data, afterwards the resistance value was updated by predict-
ing all welds chronologically. After each prediction, the resistance weight was updated
using the actual measured weld current.
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We compare against two incremental versions of the average-based model and an
oracle model. The first average-based model (Avg) predicts welding current as the
average of the lastN measured welds in the same welding program. The second model
(Avg ES) works similarly as the first, but uses exponential smoothing to update the
prediction value once the model has N historic values for the welding program. We
only use exponential smoothing after N values to minimize the effect of noise on the
first predictions. Finally, the oracle model is a non-updating version of the physics
model that was trained on all data of all three periods and tracks a different resistance
for each period. This means the oracle model is evaluated on the same welds it was
trained on.

For all models, we calculate the MAP error for all welding currents in period 2
and 3. To estimate how quickly each model adapts, we also calculate the MAP error
when ignoring a predefined number of welds after either transition. Table 2.2 lists the
prediction errors and gives several interesting insights.

Looking at both variants of the average-based model, we see better performance
when the model can adapt more quickly. This is demonstrated in the first variant for the
lower window size N and in the second variant for the higher α value. Furthermore,
we see that all average-based models perform better if we exclude more welds after
either maintenance. This shows that these models would need several days to adjust to
the changed behavior.

Looking at the physics model, we see improved predictions for faster reactivity
(higher α), but do not see major improvement after skipping 50 to 100 welds. This
demonstrates the faster update speed of the physical model over the average model.
The incremental physical model clearly outperforms both variants of the average-based
model and even the oracle model. The former can be attributed to the single shared
parameter in the physics model, which adjusts the model for all welding programs,
whereas the average model has to update these independently. The latter can be at-
tributed to the fact that the oracle assumes the absence of local trends.

To visualise performance over time, we again define rejected welds as those with
a prediction error greater than 3% and plot the total number of rejected welds over
time in Figure 2.5. Here, we see that despite major differences in the slopes for all
models, some patterns are conserved, meaning there is a degree of consensus between
all models. Overall, the average-based models have more rejected welds. Noticeably,
both transitions are followed by a sudden increase as the average-based models have to
adjust the prediction value for all welding programs. In contrast, the physical models
exhibit only minor jumps after either transition that further diminish for the more adap-
tive models. Note that small jump artefacts actually may be desired by the operator as
a way to notice a fundamental change to the system. In this way, a series of rejected
welds over a short period could instigate further investigation.

All findings point to the presence of both minor and major variations over time
of the welding current that may be related to the welding machine or input materi-
als over time. The updating physics model is significantly better at keeping up with
these changes. In this experiment, the physics model would have rejected around 250
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MAP Error (%)
Excluded welds 0 50 100 250 500

Incr. Physics (α = 0.005) 0.984 0.976 0.968 0.956 0.954
Incr. Physics (α = 0.01) 0.956 0.949 0.944 0.941 0.943
Incr. Physics (α = 0.02) 0.931 0.925 0.923 0.923 0.925
Incr. Physics (α = 0.05) 0.892 0.888 0.887 0.888 0.889
Incr. Physics (α = 0.10) 0.860 0.857 0.856 0.857 0.858
Avg (N = 25) 1.165 1.160 1.156 1.126 1.094
Avg (N = 50) 1.263 1.256 1.249 1.215 1.171
Avg (N = 100) 1.394 1.388 1.379 1.342 1.293
Avg ES (N = 25, α = 0.01) 1.564 1.556 1.548 1.511 1.461
Avg ES (N = 25, α = 0.02) 1.344 1.338 1.330 1.295 1.249
Avg ES (N = 25, α = 0.05) 1.166 1.161 1.156 1.125 1.091
Oracle (Non-Incr. Physics) 1.028 1.027 1.026 1.025 1.022

Table 2.2: Welding current prediction error of all model for all welds in maintenance period 2
and 3, excluding a number of welds that occur just after either transitions. All average-based
models perform best when ignoring up to 500 welds after each transition, indicating they require
a long time to adjust after a transition. In contrast, the physics-based models perform optimal
after 50 to 100 welds. Overall, the physics model outperform the average-based models and
even the oracle model. This shows that welding current is affected by local temporal changes
captured by the updating physics model.

(1.6%) welds, whereas the best average-based models rejected over 800 welds (5.2%).
The process engineer confirmed the value of these results, as it meant that the current
monitoring system would be less affected by unexpected shifts, while still signaling
these shifts.

2.6 Conclusion

In this work, we present a novel approach to model welding current in mash seam
welding, applied to weld quality control in continuous production lines of steel mills.
Where state of the art methods rely on statistical approaches, our model is based on
physical laws, making it highly interpretable. Model parameters are determined using
the open source TensorFlow framework, after which the model can be easily imple-
mented in constrained environments, such as the process computer.

We evaluated our model using 15 months of collected data from the ArcelorMit-
tal Belgium site, which exhibits both sudden and gradual changes in welding cur-
rent. When comparing non-incremental models, our model achieves similar prediction
scores as statistical methods. However, our incremental model clearly outperforms the
incremental statistical methods, because it only updates a single parameter whereas
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Figure 2.5: Cumulative number of rejected welds (on a total of 15231 welds) over time for
models trained exclusively on data before the first transition. Welds are rejected when the pre-
diction error is larger than 3%. The average-based models have noticeable jumps after both
transition periods, the timings of the jumps can be attributed to batches that require different
welding programs. The physical models only exhibit minor jumps from this effect.

the statistical models need to update one parameter per welding program.
Our work focuses solely on current prediction, but can be easily combined with

other quality assurance techniques described in literature. At the time of writing,
ArcelorMittal Belgium was incorporating our incremental model into their production
process.

References

[1] Amit Kumar Sinha, Duck Young Kim, and Darek Ceglarek. “Correlation anal-
ysis of the variation of weld seam and tensile strength in laser welding of galva-
nized steel”. In: Optics and lasers in engineering 51.10 (2013), pp. 1143–1152.

[2] A Sumesh, KRameshkumar, KMohandas, andR ShyamBabu. “Use ofmachine
learning algorithms for weld quality monitoring using acoustic signature”. In:
Procedia Computer Science 50 (2015), pp. 316–322.

[3] Yanhua Ma, Pei Wu, Chuanzhong Xuan, Yongan Zhang, and He Su. “Review
on techniques for on-line monitoring of resistance spot welding process”. In:
Advances in Materials Science and Engineering 2013 (2013).



52
CHAPTER 2. AN INCREMENTAL PHYSICS-INSPIRED CURRENT REGRESSION

MODEL

[4] Kang Zhou and Ping Yao. “Overview of recent advances of process analysis and
quality control in resistance spot welding”. In: Mechanical Systems and Signal
Processing 124 (2019), pp. 170–198.

[5] Vinicius Santos de Deus, Jose Adilson Castro, and Sandro Rosa Correa. “Corre-
lation Among the Input Thermal Parameters and Thermography Measurements
Data of the Resistance Seam Welding”. In: Materials Research 23.1 (2020).

[6] TMira-Aguiar, C Leitão, andDMRodrigues. “Solid-state resistance seamweld-
ing of galvanized steel”. In: The International Journal of Advanced Manufac-
turing Technology 86.5 (2016), pp. 1385–1391.

[7] Alireza Khosravi, Ayyub Halvaee, and Mohammad Hossein Hasannia. “Weld-
ability of electrogalvanized versus galvanized interstitial free steel sheets by re-
sistance seam welding”. In: Materials & Design 44 (2013), pp. 90–98.

[8] Julio Molleda, Juan L Carús, Rubén Usamentiaga, Daniel F García, Juan C
Granda, and José L Rendueles. “A fast and robust decision support system for
in-line quality assessment of resistance seam welds in the steelmaking indus-
try”. In: Computers in industry 63.3 (2012), pp. 222–230.

[9] Rui Miao, Yuntian Gao, Liang Ge, Zihang Jiang, and Jie Zhang. “Online de-
fect recognition of narrow overlap weld based on two-stage recognition model
combining continuous wavelet transform and convolutional neural network”. In:
Computers in Industry 112 (2019), p. 103115.

[10] JE Gould. “Theoretical analysis of welding characteristics during resistance
mash seam welding of sheet steels”. In:Welding journal 82.10 (2003), pp. 263–
267.

[11] A Kocańda and C Jasiński. “Extended evaluation of Erichsen cupping test re-
sults by means of laser speckle”. In: Archives of Civil and Mechanical Engi-
neering 16 (2016), pp. 211–216.

[12] SS Indimath, R Shunmugasundaram, S Balamurugan, M Dutta, SK Gudimetla,
and K Kant. “Online ultrasonic technique for assessment of mash seamwelds of
thin steel sheets in a continuous galvanizing line”. In: The International Journal
of Advanced Manufacturing Technology 91.9 (2017), pp. 3481–3491.

[13] Javier García-Martín, Jaime Gómez-Gil, and Ernesto Vázquez-Sánchez. “Non-
destructive techniques based on eddy current testing”. In: Sensors 11.3 (2011),
pp. 2525–2565.

[14] Wenhui Hou, Dashan Zhang, Ye Wei, Jie Guo, and Xiaolong Zhang. “Review
on computer aided weld defect detection from radiography images”. In: Applied
Sciences 10.5 (2020), p. 1878.

[15] Haodong Zhang, Zuzhi Chen, Chaoqun Zhang, JuntongXi, andXinyi Le. “Weld
defect detection based on deep learning method”. In: 2019 IEEE 15th Inter-
national Conference on Automation Science and Engineering (CASE). IEEE.
2019, pp. 1574–1579.



REFERENCES 53

[16] Ruben Usamentiaga, Julio Molleda, and Daniel F Garcia. “Real-time assess-
ment of the reliability of welds in steel strips”. In: IEEE Transactions on Indus-
try Applications 46.1 (2009), pp. 81–88.

[17] Julio Molleda, Daniel F García, Diego González, Iván Peteira, and JA Go.
“Fuzzy-based approach to real-time detection of steel strips defective welds”.
In:CIMSA. 2005 IEEE International Conference on Computational Intelligence
for Measurement Systems and Applications, 2005. IEEE. 2005, pp. 169–174.

[18] Julio Molleda, Juan C Granda, Rubén Usamentiaga, Daniel F García, and Dave
Laurenson. “A quality inspection system for resistance seam welds in endless
production of steel coils using anomaly detection techniques”. In: 2012 IEEE
Industry Applications Society Annual Meeting. IEEE. 2012, pp. 1–8.

[19] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015. url: https://
www.tensorflow.org/.

https://www.tensorflow.org/
https://www.tensorflow.org/




Chapter 3

A Generalized Matrix Profile
Framework with Support for
Contextual Series Analysis

Chapter 1 demonstrated the wide range of time series analytics methods that are based
on the retrieval of similar subsequences using the matrix profile. However, similar-
ity is quite a versatile constraint, as it is defined by one of many possible similarity
measures such as those mentioned in Section 1.2.2. Conceptually, any measure can
be used with any technique, though this proves difficult in practice as it would require
custom implementations for each variant. Even with all variant techniques available,
the situation is still not ideal since implementations are independent, meaning calcula-
tions are duplicated if an analyst chooses to apply several techniques. The first part of
this chapter tackles this issue by introducing a plug-and-play framework for the matrix
profile that allows users to freely and efficiently combine matrix profile techniques.

The second part of the chapter introduces a new technique that is can visualize rep-
etitions in a series. Where multidimensional scaling (shown in Section 1.3) extracted
motifs to visualize their similarity in a lower dimension, our technique shows which
regions in time series are similar to each other. The visualization can be seen as a sum-
marized distance matrix, guided by expert knowledge of the analyst. By visualizing
the patterns in a time series, we can easily spot anomalies in time series that are not
discords.

My contributions can be summarized as follows:

1. Introducing the Series DistanceMatrix (SDM) framework for combining the var-
ious matrix profile variants, thereby facilitating data analytics. The open source
implementation is used for all following chapters in this book.

2. Introducing the Contextual Matrix Profile (CMP) as a new data analytics tech-
nique with direct applications for visualization and anomaly detection.
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Abstract The Matrix Profile is a state-of-the-art time series analysis technique that
can be used for motif discovery, anomaly detection, segmentation and others, in vari-
ous domains such as healthcare, robotics, and audio. Where recent techniques use the
Matrix Profile as a preprocessing or modelling step, we believe there is unexplored
potential in generalizing the approach. We derived a framework that focuses on the
implicit distance matrix calculation. We present this framework as the Series Distance
Matrix (SDM). In this framework, distance measures (SDM-generators) and distance
processors (SDM-consumers) can be freely combined, allowing for more flexibility
and easier experimentation. In SDM, the Matrix Profile is but one specific configura-
tion. We also introduce the Contextual Matrix Profile (CMP) as a new SDM-consumer
capable of discovering repeating patterns. The CMP provides intuitive visualizations
for data analysis and can find anomalies that are not discords. We demonstrate this
using two real world cases. The CMP is the first of a wide variety of new techniques
for series analysis that fits within SDM and can complement the Matrix Profile.

3.1 Introduction

The need for data analysis is increasing as more data is being recorded, stored and
made available. One driving factor is the rise of the Internet of Things (IoT), where
traditional dumb devices such as vehicles, household appliances or city infrastructure
are enhanced with internet connectivity for monitoring and/or control. In 2018, there
were an estimated 7 billion active IoT devices, and this number is expected to double
in about 5 years [1]. Many sensors perform periodic monitoring, creating the need for
a subdomain of data analysis: series analysis.

Series analysis techniques deal with ordered collections of data points, rather than
independent data points. Time series are most common, measuring specific features
across time. However, not all series are time series. For example, in [2], skull outlines
in images are converted to a series for classification purposes. Unlike non-series, con-
secutive points in series carry meaning and patterns will often occur throughout the
series. Finding and analyzing these patterns can allow better insights in the data.

From a business point of view, series analysis can lead to decreased costs. One
such case is maintenance in industry [3]. Today, to prevent the high cost of unexpected
machine breakdowns, machine owners perform preventive maintenance periodically.
With condition-based maintenance, sensors monitor the health of a machine by record-
ing and analysing time series data to gain insights. This way, machine health is known
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and owners can better align planned maintenance with the actual need for mainte-
nance, resulting in fewer interventions and decreased maintenance costs and machine
downtime. A different business case can be made for trend prediction and anomaly
detection [4]. Imagine an online service provider that monitors various metrics related
to the usage and load of their services. If the provider is able to gain insight in the
usage patterns of the service, he can anticipate certain trends and be made aware of
unexpected behavioral patterns of their users. This not only allows the provider to al-
locate resources more dynamically, but also gives him more time to act on unexpected
behavior that might lead to more severe issues.

One state-of-the-art series analysis technique is the Matrix Profile [5], introduced
by Yeh et al. in 2016. Given two series S1 and S2, and a window length m, the
Matrix Profile is a new series of length |S1| −m+ 1 containing the distance between
any window of S1 and its best matching window in S2. By itself, the Matrix Profile
can be used to find the top motifs (the best matching subsequences in a series) and the
top discords (the most unusual subsequences in a series). Subsequently, it can be used
for anomaly detection in contexts where anomalies are defined by unique behavior.
Since its inception, many techniques have been published that either extend the Matrix
Profile or use it as a building block for new insights [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

While much progress has been made by going forward with the Matrix Profile, we
believe there is also value in taking a step back. One of the implicit steps during the
Matrix Profile calculation is the fragmented calculation of the distance matrix of all
subsequences of the two input series. In this chapter we present the Series Distance
Matrix (SDM) framework as the base building block on which specialized techniques
can be built, rather than the Matrix Profile itself. To the best of our knowledge, we
are the first to present such an overarching framework. Whereas several methods to
calculate the distance matrix have been published [5, 6, 16, 13, 14], they have never
been suggested as (part of) an overarching framework.

The presented SDM framework separates components that calculate distances be-
tween subsequences of input series (SDM-generators) and components processing
these distances in a meaningful way (SDM-consumers). Existing Matrix Profile exten-
sions from literature can be packaged as either SDM-generators or SDM-consumers
and plugged into the SDM framework. By separating these components, it becomes
easier to combine different techniques freely without additional effort or overhead, re-
sulting in a much broader arsenal of techniques that can be tried on new challenges.
Furthermore, distances can be generated once but processed by multiple consumers
in combined calculations, resulting in an overall more efficient solution. Lastly, be-
cause of this decoupling, components will be smaller, simpler and can be optimized
independently from each other.

We also introduce the Contextual Matrix Profile (CMP) and a new SDM-consumer
to calculate the CMP. The CMP can be seen as a configurable, 2-dimensional version
of the Matrix Profile, that tracks multiple matches across window regions of the series
whereas the Matrix Profile tracks one match for each window. Besides data visualiza-
tion, it can also be used for detecting anomalies that are not discords. As a component
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of SDM, the CMP can be calculated for any distance measure and can be calculated in
parallel with other techniques such as the Matrix Profile.

To summarize, our contributions in this work are as follows: First, we use a new
interpretation of the distance matrix to form the generalized SDM framework, which
retrofits many published techniques in SDM-generators or SDM-consumers. As sec-
ond contribution, we introduce the ContextualMatrix Profile as a new SDM-consumer.
As final contribution, we created an open source Python implementation of our SDM
framework, our CMP-consumer and several Matrix Profile-based consumer and gen-
erator implementations based on literature [5, 6, 10, 12, 17, 16, 15]. To the best of our
knowledge, this is be the first Python library that provides an implementation combin-
ing this many techniques.

The remainder of this chapter is structured as follows: Section 3.2 gives an
overview of literature regarding the Matrix Profile. In Section 3.3, we describe our
SDM framework. Section 3.4 describes our CMP as well as the new SDM-consumer
to calculte it. Its value is demonstrated for data visualization and anomaly detection
for two real world datasets in Section 3.5. Finally, we conclude our findings in Section
3.6.

3.2 Background and Related Work

In this section, we formalize the definitions used in this work, summarize the core
details of the Matrix Profile and list related literature.

3.2.1 Definitions
We start by defining the common concepts of series and subsequences.

Definition 3.1 (Series) A series S ∈ Rn is an ordered collection of n real values
(s0, s1 . . . sn−1).

Definition 3.2 (Subsequence) A subsequence Si,m is the continuous subsequence of
S starting at index i of length m: (si, si+1 . . . si+m−1). The subsequence cannot be
longer than the original series (1 ≤ m ≤ n) and has to fall completely within S:
(0 ≤ i ≤ n−m).

The distance measure used in the Matrix Profile is the z-normalised Euclidean
distance. The reason for this is explained in the next subsection.

Definition 3.3 (Z-normalised series) The z-normalised series Ŝ is constructed by
transforming S so it has a mean µ = 0 and standard deviation σ = 1: Ŝ = S−µS

σS
.

Definition 3.4 (Z-normalised Euclidean distance) The z-normalised Euclidean dis-
tance DZE(A,B) between 2 series of equal length A ∈ Rm and B ∈ Rm is defined
as the Euclidean distance DE of the z-normalised series Â and B̂.
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DZE(A,B) = DE(Â, B̂) =
√

(â0 − b̂0)2 + . . .+ (âm−1 − b̂m−1)2

3.2.2 Matrix Profile

In 2016, Yeh et al. [5] published a novel technique to perform series subsequence all-
pairs-similarity-search on two series, producing two new series: the Matrix Profile
and the Matrix Profile Index. The Matrix Profile is defined as the vector containing
the z-normalized Euclidean distances between each subsequence from the first series
and its closest matching subsequence from the second time series. The Matrix Profile
Index contains the subsequence index in the second series for each match.

Concretely, given two series S1 ∈ Rn and S2 ∈ Rk and a subsequence length
m, the Matrix Profile M ∈ Rn−m+1 and Matrix Profile Index I ∈ Rn−m+1 are
new series such that for each i ∈ [0, n − m], Ii contains the index of the start of
the subsequence of S2 of length m that best matches S1i,m and Mi contains the
corresponding distance. In the case a self-join is performed where S1 = S2, an
additional constraint is added to prevent trivial matches, where subsequences match
themselves or nearby subsequences.

The default distance measure used is the z-normalized Euclidean distance, which
has been shown [18] to provide better results by removing the effect of a changing data
offset over time and thus focussing more on shape instead of amplitude. Typical causes
of a changing offset are wandering baselines in sensors or natural phenomena (e.g., the
gradual change in temperature throughout seasons).

3.2.3 Related Work

Literature related to the Matrix Profile can be separated into 3 categories: related work
focusing on a) the calculation of the Matrix Profile, b) techniques that gain insights
from theMatrix Profile or theMatrix Profile Index, and finally, c) ideas from theMatrix
Profile for tackling new problems.

a) Calculation of the Matrix Profile
The Matrix Profile was published together with the STAMP algorithm [5], an anytime
algorithm to calculate theMatrix Profile (and corresponding Index) of a series of length
n in O(n2 logn) time. STAMP uses the MASS algorithm [19] to iteratively calculate
the distances for each subsequence. Performance was later improved by the STOMP
algorithm [6], which uses a dynamic programming technique to reduce the runtime
to O(n2), at the cost of losing the anytime property. Another optimization came with
the SCRIMP algorithm [16], which restores the anytime property while retaining the
same complexity as STOMP. Finally, ACAMP provides another speed improvement by
postponing some operations until the Matrix Profile is completed [13]. We extended
the calculation to reduce the effects of noise when dealing with flat sequences [15,
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20], others have made extensions for handling missing data points [21] and support for
calculating the multidimensional Matrix Profile [10].

Several recent works have suggested different distance measures to be used in the
Matrix Profile. Silva et al. [22] use the Matrix Profile with the (non-normalized) Eu-
clidean distance to perform music recognition and thumbnailing. Akbarinia et al. [13]
suggest that using the Euclidean distance, and more general p-norm might be more
useful for data analysis in physics, statistics, finances and engineering. Though they
present no evaluations, one can expect relevant results for cases where series are not
subjected to wandering baselines [18], such as system monitoring. Another distance
measure suggested is ψ-DTW [14]. The authors claim that for many application do-
mains, the z-normalized Euclidean distance is too strict while looking for motifs and
discords. The ψ-DTWmeasure performs a non-linear transformation along the (time)
axis and can ignore a prefix or suffix of the subsequence being matched. The authors
find improved results for domains such as motion tracking (e.g., athlete positioning,
motion capture and gesture analysis) and music data mining, though they underline
the difficulty of objectively evaluating the relevance of motifs and discords.

b) Gaining insights
Insight in a series can be gained using the Matrix Profile (Index). Motif and discord
discovery consist of finding the top matching and worst matching subsequences in a se-
ries and can be solved quickly by finding the minima and maxima in the Matrix Profile
[5]. Discord discovery can be interpreted as a form of anomaly detection (which has a
wide range of applications in machine maintenance, healthcare or system monitoring).
In cases where the user knows the type of pattern they are looking for, they can use the
Annotation Vector [9] to transform the Matrix Profile before performing motif/discord
discovery. Other insights are also possible such as finding gradually changing patterns
[11] or finding changes in the underlying behavior being measured [12, 15].

c) Matrix Profile as a building block
The series motifs found by the Matrix Profile have been used for data visualization
[7] and classification [8] techniques. Furthermore, a series summarization technique
[23] has been published which uses MPDist, a distance measure that considers two
sequences similar if they share many similar subsequences [24]. The calculation of
MPDist involves finding the best match for all subsequences in both series. These
could be found by performing a double Matrix Profile calculation, but can also be
obtained in a single calculation by processing the subsequence distances in a different
way.

As we can see, a wide range of techniques has emerged, most focusing on an aspect
closely related to the Matrix Profile.

3.3 The Series Distance Matrix

Many of the works in Section 3.2 have started from the idea of the Matrix Profile and
created a new algorithm to obtain one specific variation. Looking forward to the future,
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we can expect the number of algorithms to rise dramatically as the different distance
measures and processing methods are further expanded and combined. Instead, we
propose to view these variations as instances of a more generalized framework which
we call the Series Distance Matrix (SDM).

3.3.1 SDM: General Concept

We present SDM as a component based framework for deriving insights by process-
ing pairwise distances of the subsequences of pairs of series (this includes self-joins
by assuming two equal series). Given pairs of series, SDM-generators are responsible
for calculating the distances between all pairs of subsequences. Because calculating
the full distance matrix is not scalable, we instead calculate fragments of the distance
matrix. These fragments are processed by the SDM-consumers, after which the frag-
ment is discarded and a new fragment is calculated. Each consumer is responsible for
processing all distance fragments in a way that provides certain insights.

Conceptually, the distance matrix fragments can take any form, however, columns
and diagonals have proven to work well for the Matrix Profile. The column based
approach is used by the STOMP algorithm [6], it has the advantage of being easier
to implement and is more suited for cases where one series is being streamed in an
online fashion, since each new data point results in one new column of distance matrix
values. The diagonal approach is used by the SCRIMP [16] algorithm. By processing
diagonal fragments of the distance matrix, the calculated distances of each fragment
are spread over many different pairs of subsequences. This can be utilised by some
consumers, such as the Matrix Profile, to provide approximate intermediate results
when processing all data takes a long time, making it well suited for interactive use
cases.

Figure 3.1 shows a schematic visualization of the Matrix Profile calculation fitted
into the SDM framework.

By separating the distance calculation and processing, we can easily combine gen-
erators and consumers to our needs. For example, the techniques described by Ak-
barinia et al. [13] and Furtado Silva et al. [14] are a combination of the p-norm or
ψ-DTW generator with a Matrix Profile consumer. Combinations that have not yet
been researched, such as combining a ψ-DTW generator with an MPDist consumer,
are - thanks to the SDM framework - just as straightforward. A second benefit is that
multiple consumers can be configured for a single generator, instead of having to ad-
just the algorithms itself, this way reducing calculation overhead. Lastly, by adopting a
component based design, each component can be optimized independent of the others.
For example, if a faster way is found to calculate the z-normalized Euclidean distance,
only one generator has to be updated, instead of every technique using the z-normalized
Euclidean distance.
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Figure 3.1: The Matrix Profile calculation fitted into the SDM framework. Starting from two
input series (S1, S2), the z-normalized Euclidean distance generator iteratively creates frag-
ments, in this case columns (F), of the distance matrix of all subsequences (DM). Each of these
fragments are processed by the Matrix Profile consumer, storing the minimum value for each
column in the resulting Matrix Profile (MP).

3.3.2 SDM: Python Implementation

As part of this work, we released a Python library1 under the MIT license implement-
ing our SDM framework and CMP consumer. In addition to the contributions of this
work, it contains implementations for the noise-corrected z-normalized Euclidean dis-
tance ([5, 6, 16, 15]), Euclidean distance, Matrix Profile [5], Multidimensional Matrix
Profile [10], Left- and Right-Matrix Profile [11] and VALMOD [17]. It supports batch
operations as well as streaming data. At the time of writing, and to the best of our
knowledge, this is the first public Python library integrating this many different Matrix
Profile related work as consumers and generators in our generic framework.

3.4 Contextual Matrix Profile

This section covers a new series analysis technique, the CMP, which can easily find
repeated patterns in series and shares the benefits of the Matrix Profile: it is determin-
istic, domain agnostic, exact and is suited for parallelization. The CMP is calculated by
the CMP-consumer in the SDM framework. Note that thanks to the SDM framework,
we can focus purely on how the calculated distances should be processed, since we can
combine the CMPwith any distance measure that has a corresponding SDM-generator
implementation.

As the name implies, the CMP is closely related to the Matrix Profile, and can
be best explained in how it differs from it. We make our comparison starting from
the distance matrix (the implicit matrix containing the distances of all subsequences
from the first input series to all subsequences from the second input series). Where the

1 https://github.com/IDLabResearch/seriesdistancematrix/
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Figure 3.2: Matrix Profile and CMP differ in how they are created using the distance matrix
(light gray). The Matrix Profile (dark gray, left) consists of the column-wise minimum of the
values in the distance matrix. The Contextual Matrix Profile (dark gray, right) is created by
taking the minimum over rectangular areas. Note that these areas may overlap and may or may
not cover the entire distance matrix, depending on the user configuration.

Matrix Profile is defined as the column-wise minimum over the entire distance matrix,
the CMP is defined as the minimum over rectangular regions of the distance matrix.
These rectangles may overlap and may or may not cover the entire distance matrix.
Their configuration is up to the user. A visual comparison of the Matrix Profile and
the CMP can be seen in Figure 3.2. Note that the CMP-consumer may be configured
in such a way that it calculates the Matrix Profile. In this way, the CMP can be seen as
a generalization of the Matrix Profile.

Given two input series S1 and S2 and subsequence length m, the Matrix Profile
looks for the best matching subsequence in S2 for any subsequence in S1. The CMP
on the other hand looks for the best matching subsequence in ranges over S1 and S2.
These ranges allow us to group the data in different ways and can reveal new insightful
patterns. Specifically, because we aggregate the distances in ranges across both series,
the CMP is very good at picking up repeated patterns, even if these patterns are not
strictly periodic. We will show two use cases for the CMP, i.e., data visualization and
anomaly detection, but first we discuss more thoroughly how the CMP is calculated.

3.4.1 Calculating the CMP

Many specialized algorithms could be conceived for specific region configurations.
Here, we provide a general purpose algorithm. In this algorithm, the regions of interest
are provided by specifying ranges along the dimensions of the distance matrix. This
principle is illustrated in Figure 3.3. One advantage of this approach is that for non-
overlapping ranges, the resulting CMP resembles a reduced distance matrix. We will
exploit this property in our use cases below.

Our algorithm assumes the distance matrix is provided in a column-wise manner
(similar to the STOMP algorithm [6]). A straightforward adaptation for diagonals is
also made available in our reference implementation.
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Figure 3.3: Example of region definitions: a user has specified three horizontal ranges (A, B,
C) and five vertical ranges (1. . . 5) on the axes of the distance matrix (DM). Any pair of ranges
from both axes corresponds to one region of interest in the distance matrix. The minimum value
of the region is calculated and stored in the CMP. Note that the ranges may overlap and may or
may not fully cover the distance matrix dimensions.

Algorithm 1: CMP-consumer Initialization
Input: R1, ranges for the vertical axis of the distance matrix. A range is a

pair defining a start (inclusive) and end (exclusive) index.
Input: R2, ranges for the horizontal axis of the distance matrix.

1 v_ranges← R1;
2 h_ranges← R2;
3 cmp← |R1| × |R2| matrix, filled with +∞;
4 cmp_index← |R1| × |R2| matrix, filled with (−1,−1);

The initialization of the CMP-consumer is outlined in Algorithm 1. We take two
lists of ranges as input, each defining the contexts for one of the input series. We
store the ranges in line 1 and 2. Next, we prepare containers for the CMP and corre-
sponding indices, similar to the Matrix Profile Index. Note that the CMP indices are
two-dimensional since we need to track the exact match index for both input series.

The actual calculation of the CMP is listed in Algorithm 2. In line 1, we iterate over
all ranges defined over the horizontal dimension of the distance matrix and skip any
that do not contain the column being processed in lines 2-4. Next, we iterate over all
ranges for the vertical axis. Since all ranges will have some overlap with the distance
matrix column, we do not need to filter. In lines 6 and 7, we determine the minimum
value of the distance matrix column that is contained in both ranges. We compare this
minimum against the best value so far and update the distance and corresponding index
if we find a better match (lines 8-12).

Note that when h_ranges is very long, a linear scan becomes inefficient. De-
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Algorithm 2: CMP-consumer Column Processing
Input: The column index col.
Input: A vector d containing all distances on column col.

1 for j, h_range← enumerate(h_ranges) do
2 if col not in h_range then
3 continue
4 for i, v_range← enumerate(v_ranges) do
5 dists← d[v_range];
6 min_dist← min(dists);
7 if min_dist < cmp[i, j] then
8 cmp[i, j]← min_dist;
9 row ← argmin(dists) + v_range[0];

10 cmp_index[i, j]← (row, col);

pending on the intended use, optimizations are obvious: tree maps for general cases,
hash based lookup for strictly periodic ranges, or storing the search index for non-
overlapping ordered ranges. In this section, we did not attempt to list all possibilities
and instead presented the approach best suited for understanding the technique.

Lastly, we briefly discuss the complexity of the CMP. Strictly speaking, the space
complexity is constant as it is determined by the configuration of the vertical (V) and
horizontal (H) ranges: O(|H||V |). When ranges will be defined in function of the
length of the input series (n), O(n2) is more representative. Note that this last form
is overly pessimistic as |H| and |V | will typically be much smaller than n. The time
complexity for processing a single column is O(|H| + |V | × S), where S represents
the average span of a vertical range. In a typical case where ranges will not overlap,
this can be simplified to O(n). As such, a full calculation can be done in O(n2), the
same complexity as the calculation of the Matrix Profile using STOMP.

3.5 CMP for Data Visualization and Anomaly Detection

We will demonstrate the value of the CMP using two different use cases: data visu-
alization and anomaly detection. For both cases, we use the public New York Taxi
dataset and a dataset delivered to us by Renson (a ventilation manufacturing company)
that we share as part of this publication [25]. Additionally, in our most recent pa-
per [20], we combine the CMP with the noise elimination technique [15] to visualize
a UCI activity dataset and show potential for activity segmentation as well. Note that
it is not our goal to improve upon the state-of-the-art anomaly detection techniques in
this section, but rather to show the potential of the CMP.
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Figure 3.4: The New York Taxi dataset from the Numenta Anomaly Benchmark. It lists the
summed number of taxi passengers in New York at 30 minute intervals. Top: Complete dataset.
Bottom: The first two weeks of the dataset, where we see a clear periodic pattern. Note how the
pattern for the first Friday, Independence Day, resembles the pattern for a weekend day.

All figures in this section were created using Python-based Jupyter notebooks,
which we have shared online [25]. Besides providing an easy way to reproduce our
results, they offer some additional visualizations we omitted due to size constraints.

3.5.1 New York Taxi Dataset: Data Visualization

The first dataset is the New York Taxi public dataset from the Numenta Anomaly
Benchmark [26]. It lists the total number of taxi passengers in New York city for a
period from July 2014 up to February 2015, bucketed per half hour. An overview and
excerpt is shown in Figure 3.4.

We calculated the CMP by self-joining the data using the z-normalized Euclidean
distance, using a window length of 44 (22 hours) and a daily context starting at mid-
night until 02:00 in the morning. Because we are self-joining the data, a constraint
prevents any day from matching itself. Simply put, we are asking for the most (shape-
wise) similar subsequences between any pair of days, where both subsequences are 22
hours long and can start between midnight and 02:00. These values were based on
a quick visual inspection of the data. By choosing a two hour context range and a 22
hour window length, we allow temporal shifts when comparing windows, while always
comparing values of the same day. Note that for slightly different values, we obtained
similar results. Since the dataset contains 215 days and we define one context per day,
the resulting CMP is a 215 by 215 matrix. It is shown in Figure 3.5. Note that the
CMP is symmetrical because of the self-join, higher values in the CMP correspond to
more dissimilarity.

When visualized, the CMP can be used to gain insight into the dataset it was built
on. For example, the pattern of small squares visible in Figure 3.5 indicates that there
are typically 5 days displaying similar behavior, followed by 2 days of different behav-
ior. These patterns are of course caused by the cycle of weekdays and weekends. Other
artefacts standing out are the wide band around New Year, near the end of November
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Figure 3.5: The CMP for the New York Taxi dataset. Each point displays the distance between
2 days, defined as the z-normalized Euclidean distance between the best matching 22 hour long
subsequences of both days. Lower distances correspond to a better match. We can clearly see a
periodic pattern caused by weekdays versus weekends and the changed behavior around Thanks-
giving and between Christmas and NewYear. The bright line near the end of January is the effect
of a blizzard hitting New York.
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Figure 3.6: The Matrix Profile for the New York Taxi dataset. Each value represents the dis-
tance from the subsequence of the series starting at that index to its nearest match, where higher
distances mean more unique subsequences. While we see higher values corresponding to some
holidays or other events (discussed in Section 3.5.2), the periodic nature of the data is not cap-
tured in this visualization.

(Thanksgiving) and the stripe near the end of January (when a blizzard struck New
York), all indicating different behavior in the dataset.

Visualizations like these help data scientists explore new datasets. By inspecting
the CMP, they can find patterns and deviations from these patterns that might require
further investigation (as we will do in our next use case). Another application is the
creation of visual thumbnails for series, helping users to navigate large collections
of series. Other thumbnail techniques have been presented using SAX [27] and time
series snippets [23] but are unable to provide this degree of insight into the underlying
patterns.

Of course, the Matrix Profile can also be visualized to gain insight in a series. We
calculated the Matrix Profile using the same parameters as the CMP, it is shown in
Figure 3.6. As mentioned before, the Matrix Profile is a one dimensional vector where
high values correspond to more unique subsequences. Looking at the figure, we gain
some insights in where the data displays unique behavior, which is further explored
in Section 3.5.2. However, the Matrix Profile is unable to capture the periodic nature
of the data since each sequence is compared against all other sequences rather than
multiple spans like the CMP does.

As a final demonstration of the possibility to gain insights from visualizing the
CMP, we would like to share an unexpected trivia we discovered. Looking carefully,
one can see a small difference in the values before and after September 1st (Labor
Day). This is more clearly presented in Figure 3.7 (left). We see the days before Labor
Day have a worse match with the days after Labor Day and vice versa, indicating the
taxi passenger behavior has changed. Indeed, when looking at the daily graphs (Figure
3.7 right), we see a noticeable difference in the behavior around 07:30 in the morning:
after Labor Day, the number of taxi passengers is higher. The most likely explanation
is the start of the school year, which also falls on September 1, enabling parents to
leave earlier for work.
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Figure 3.7: Left: The CMP for the New York Taxi dataset, with values restricted to the range
[0.4, 1.2], highlighting the change in distance for days before and after September 1st. Right: The
origin of the difference in distances. The number of taxi passengers before and after September
1st differs noticeably around 07:30 in the morning.

3.5.2 New York Taxi Dataset: Anomaly Detection

As anomalies are defined as patterns that do not conform to expected behavior [28],
objectively evaluating them is particularly difficult for realistic datasets. What is inter-
preted as anomalous for one user, might be normal behavior for another [29]. While
the New York Taxi dataset contains a ground truth of 5 anomalies (listed in Table 3.1)
that were specified by the dataset provider as “anomalies with known causes”2, we
argue several deviations from expected patterns are present in the data but were not
included in the ground truth because of background knowledge not present in the data.
As a result, we find the ground truth to be biased towards techniques that find unique
behavior, rather than unexpected behavior. Luckily, it is easy to further investigate and
validate suspected anomalies, as we will do next.

The visualization of the CMP in Figure 3.5 already gives a good visual indication
about anomalies: on some days the expected repetitive pattern is not present. Based on
the visual pattern, we divided the contexts into three groups and form smaller CMPs:
one containing weekdays and two containing only Saturdays and only Sundays respec-
tively. This is visualised in Figure 3.8. These reducedCMPs each represent a collection
of days that we expect to behave in a similar manner. Since each value in a column (or
row) in the CMPs indicates how much a single day (context) deviates from other days
(contexts), we can average each column to obtain a single value indicating how much
this day deviates from the other days. We define this value as the anomaly score for
that day. Note that we average the values in the reduced CMPs, meaning that, e.g. the
anomaly score of any Sunday is based on how much it differs from all other Sundays

2 https://github.com/numenta/NAB/wiki/FAQ
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Figure 3.8: Reduced CMPs from Figure 3.5, containing only the entries for weekdays (first),
Saturdays (second) or Sundays (third) on both axes. Fourth: The anomaly scores (obtained by
averaging each column of all reduced CMPs), ordered from high to low. We determined the
number of worthy anomalies to be 18.

in the dataset, irrespective of the differences with Saturdays or weekdays. After cal-
culating the anomaly score for every day, we ordered all anomaly scores and using the
Elbowmethod, we determined a threshold to obtain 18 anomalous days in total (Figure
3.8 right). The anomalies are listed in Table 3.1 and visualized in Figure 3.9.

We compare the anomalies against those found by the Matrix Profile. The Matrix
Profile can be used to find series discords, subsequences that maximally differ from any
other subsequence, these discords can be interpreted as anomalies [5]. We calculated
the anomalies using the Matrix Profile with a window length of 22 hours (similar as
the CMP) and not allowing overlapping anomalies. We obtained 16 anomalies using
the Elbow method, which are listed in Table 3.1 and visualized in Figure 3.10. Note
that the anomalies here have no starting time restriction and can partially cover one or
two days.

Of the 25 different anomalies listed in Table 3.1, only nine are flagged as anoma-
lous by both techniques. For each of these nine, a reasonable explanation could be
found, falling into the categories of holiday (Independence Day, Thanksgiving, Mar-
tin Luther King Day), holiday predecessor (day before Christmas, New Year’s Eve)
or large scale event (Climate March, Daylight Savings Time and blizzard). The CMP
additionally detected Labor Day, and many weekdays in the Christmas and New Years
period, typical days when people take time off from work. Note that since the anoma-
lies by the Matrix Profile can span two days, it would not be fair to consider Christmas
and New Year to be found exclusively by the CMP. For one CMP anomaly no clear
explanation could be found, though we suspect it is an after effect of the Independence
Day celebrations. The Matrix Profile on the other hand exclusively found one weather
event, one large scale event (the Millions March against police brutality), Halloween
(most likely due to the effect of late-night parties) and four days for which no clear-cut
explanation could be found. However, two of the unknown anomalies precede Labor
Day, so this could again be an effect caused by people heading out of town for celebra-
tions. Perhaps surprisingly, the Matrix Profile cannot detect Labor Day itself, this is
because it closely matches Martin Luther King Day and two weekends in the dataset,
meaning it will not be flagged as a series discord.

Rather than looking at individual anomalies, we can also look at the broader pic-
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Date Event Numenta MP CMP
Thu 2014-07-03 Evening thunderstorms 5
Fri 2014-07-04 Independence Day 6 5
Sun 2014-07-06 Unknown 15
Sun 2014-07-13 Unknown 10
Fri 2014-08-29 Unknown 8
Sun 2014-08-31 Unknown 15
Mon 2014-09-01 Labor Day 6
Sun 2014-09-21 Climate March 13 17
Fri 2014-10-31 Halloween 9
Sun 2014-11-02 Daylight Savings Time x* 3* 9
Thu 2014-11-27 Thanksgiving x 11* 12
Fri 2014-11-28 Day after Thanksgiving 11
Sat 2014-12-13 Millions March 16

Wed 2014-12-24 Christmas period 7 3
Thu 2014-12-25 Christmas x 7
Fri 2014-12-26 Christmas period 10

Mon 2014-12-29 New Year period 14
Tue 2014-12-30 New Year period 18
Wed 2014-12-31 New Year’s Eve 4 16
Thu 2015-01-01 New Year x 1
Fri 2015-01-02 New Year period 13
Fri 2015-01-09 Unknown 12

Mon 2015-01-19 Martin Luther King Day 14* 8
Mon 2015-01-26 Blizzard 2 2
Tue 2015-01-27 Blizzard x 1 4

Table 3.1: Anomalies as found by the Matrix Profile (MP) and CMP as well as the ground truth
for the dataset (Numenta). The numbers in column CMP and MP correspond to the ordering
used in Figure 3.9 and 3.10 respectively, where a lower number indicates a higher anomalous
behavior.

*: Actually listed on the preceding day, but visual inspection shows the aberrant behavior takes
place after midnight.
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Figure 3.9: The 18 anomalous days found using the CMP, ordered from most anomalous to
least anomalous. Each row shows one anomalous day (red) against all other days in the dataset
(gray). A dotted red line is used to visualize the anomaly in the column that does not match its
own type (weekday/weekend).
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ture. By comparing each CMP anomaly against other days of the same type (the sec-
ond or third column in Figure 3.9, whichever contains a solid red line), we see that all
anomalous days noticeably differ from the majority of the reference days (gray band in
the figure). This is less the case for the anomalies found by the Matrix Profile (Figure
3.10). Here, about half of the anomalies resemble the reference days, but contain some
local variation such as a spike, elongated tail or less pronounced bumps.

The question arises: which of these techniques is best suited for anomaly detec-
tion? While we suspect most users will find the results of the CMP to be more insight-
ful for this specific dataset, the general answer remains “it depends”. Fundamentally,
both techniques are searching for different things. While the Matrix Profile is look-
ing for the most unusual patterns (discords) in the series, the CMP based anomaly
detection is looking for patterns that differ most from a group of reference contexts.
Both approaches will have applications depending on the type of anomalies the user is
interested in.

Whereas a simple distancematrix betweenweekdays andweekends could also have
found these anomalies, this assumes knowing the underlying pattern in advance. One
benefit of the CMP is that it allows us to discover these patterns in advance when the
pattern is unknown in advance, which is often the case. So, assuming we did not know
the weekday/weekend similarity beforehand, we could have easily deduced it by visual-
izing the CMP. The CMP has one other major advantage over a basic distance matrix,
it allows for a (time) shift when comparing sequences (for which the added value is
better demonstrated for the next dataset). A similar approach with typical techniques
would result in a high complexity, instead we can rely on the computationally efficient
implementations of the distance generators of the SDM framework [6, 16].

3.5.3 Ventilation Dataset: Data Visualization

Our second dataset is a proprietary dataset delivered to us by Renson, a ventilation
manufacturing company. It contains measurements of various air quality metrics such
as temperature, humidity, carbon dioxide and volative organic compounds, for all
rooms within a building that are connected to a ventilation unit, for several anonymized
buildings. The users of Renson ventilation products can use this data to observe the
functioning of the ventilation system and to estimate the air quality of their home. The
metrics are measured at 15 minute intervals and differ per room type. Here, we focus
on the CO2 sensor of rooms designated as kitchen. The dataset is shown in Figure
3.11. Unlike the Taxi dataset, each household has a wide range of distinct daily behav-
iors and no immediate obvious repeating patterns, it is also not possible to verify any
root causes of anomalies. This use case represents a typical use case wherein a data
scientist has to explore data for which little to nothing is known.

We calculated the CMP using the z-normalized Euclidean distance, using a subse-
quence length of 3 hours and specifying contexts ranging from 06:00 until (including)
08:00 in the morning. The results are visualized in Figure 3.12. We see that all three
units display very different morning behavior. The first unit displays a pattern that
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Figure 3.11: Measured CO2 air content in the kitchen for three ventilation units. Left: The
complete datasets. Right: Closeup of two weeks for each corresponding dataset. A day/night
pattern is somewhat discernible, but unlike the Taxi dataset, a weekday/weekend pattern is much
less obvious.
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Figure 3.12: CMP calculated on the morning behavior of three kitchens. The first unit displays
a weekday/weekend periodic pattern similar to the Taxi dataset, as well as different behavior
around the holiday period. The second unit shows no clear pattern, indicating most mornings
have a similar regime. The third unit shows a somewhat periodic pattern that does not match
with weekdays/weekends.

closely resembles the Taxi dataset, with distinct behavior for weekdays, weekends and
holidays. It most likely belongs to a family household with regular school and work-
ing hours. The second unit shows no clear patterns, though we can see a change near
the end of the dataset. The last unit shows a pattern at the start of the dataset, which
changes starting January. While we have no explanation for the behavior in these units,
the patterns are still interesting to discover and could prove useful for experts. In par-
allel, we calculated other CMPs for noon and evening, but do not list them in this work
due to size constraints and refer to the accompanying sources for more details [25].

3.5.4 Ventilation Dataset: Anomaly Detection
After exploring the data, we continue here with the dataset for the first unit. We choose
this dataset as it shows most similarity to our expectations of a regular household and
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should therefore be easier to interpret. Similar to the Taxi dataset, we split the CMP
into contexts linked to weekdays and weekends. Since the weekday mornings are very
similar, the results are quite similar to those of the Taxi dataset and we refer the reader
to the supplementary material for more detailed results. Instead, we will focus on the
more challenging weekend behavior in this section.

The weekend measurements do not only have a wider range of behavioral patterns,
but the start time of these patterns also varies from day to day. Using the CMP cal-
culated on the morning contexts from the previous section, we created a smaller CMP
only containing weekend days. Unlike the Taxi dataset, we did not split up Satur-
days and Sundays, since there was no distinctive pattern visible for these days in the
CMP data visualization. Using the Elbow method, we determined the presence of six
anomalies.

Due to the wide variation of the patterns in both values and time, it becomes harder
to visualize the anomalies in an intuitive way. One useful approach is a matching ta-
ble, of which an extract is shown in Figure 3.13 (the complete figure is available in the
source files [25]). Every row of the table corresponds to a single weekend day (one
row in the CMP). This day is shown in the first column with the morning context high-
lighted. The remaining columns show the matches with other weekend days, ordered
from best match to worst match. Rather than showing all matches, we simply select
the matches on all three quartiles, as well as the best and worst match. Note that each
match corresponds to one single value listed in the CMP.

When inspecting the contents of the matching table, we see that the mornings clas-
sified as normal have many good matches, only showing minor differences in the third
quartile match. The matches for the anomalous mornings already show this level of
difference in the first quartile, showing that they are in fact uncommon behavior for
a weekend morning. This is quantified in the distances listed in Figure 3.13: the dis-
tances of the first quartile match of anomalies are already higher than those of the third
quartile of the normal days. Going further into detail, we see that the normal mornings
share a common pattern of a plateau followed by a smooth bump and a second, higher
plateau. We suspect this pattern is caused by someone waking up, having breakfast in
the kitchen and going to an adjacent room. The mornings marked as anomalous show
subtly different patterns. The first lacks the second plateau, the second has an ear-
lier start (causing the first plateau to fall outside the context) and also lacks the higher
plateau, the third anomaly lacks the distinct high bump at the start. Note that the second
normal morning should probably be classified as anomalous. But even though the first
spike occurs before the context, the z-normalisation enables a good match between the
subtle second bump with the bumps of other days. This again demonstrates the need
to finetune the anomaly detection algorithm to the needs of the user.

When looking at the matches in detail, we see how the blue subsequences are not
exactly the same for each match. Indeed, the contexts used to produce the CMP allow a
time shift: the three hour long subsequence should start between 06:00 and 08:00. As
we can see, this flexibility allows us to recognize similar behavioral patterns, despite
them not being aligned in time. This flexibility comes at the cost of the user having to
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Figure 3.13: Matching table for subset of weekend days for ventilation unit 1. Each row cor-
responds to one weekend day, which is displayed in the first column with the morning context
(including the window length) highlighted. The first seven rows display days classified as reg-
ular (green), the last three show anomalous days (red). The columns show the matching of the
morning context (blue) with other morning contexts (dotted orange, one per column). Note that
the matching uses subsequences of the context: each blue fragment is a three hour subsequence
of the five hour long green/red fragment. For each match, the z-normalized Euclidean distance
is displayed in the top left.

define the contexts, often having to rely on expert knowledge of the underlying process.
In this case, we relied on our personal experience about kitchen usage patterns to define
the contexts.

3.5.5 Summary

We conclude this section by reiterating our claim that anomaly detection is an inherent
subjective topic and difficult to validate. Only when knowing what a user defines as
anomalous, can the proper technique be chosen and tried. In this section, we defined
normal behavior as behavior that closely matches the majority of the data, and found
the CMP to be a suitable technique to detect outliers. We found 18 anomalies for the
Taxi dataset, which is more than the five listed as ground truth, and could provide a
straightforward explanation for all but one. In the ventilation dataset, we found six
anomalies but had no way to validate them independent of the data.

One advantage of the CMP over the Matrix Profile for anomaly detection is that
the CMP does not depend on the uniqueness of anomalies (it does not simply find
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discords), but rather on the the expectations of the user regarding normal behavior.
These expectations correspond to the CMP contexts and can be based on the insights
retrieved using the CMP for data visualization. As part of the SDM framework, the
CMP can be calculated using any distancemeasure and calculated in parallel with other
techniques such as the Matrix Profile.

3.6 Conclusion

In this chapter we introduced the Series Distance Matrix framework (SDM), a gen-
eralisation of the original approach used to calculate the Matrix Profile. The SDM
framework splits the generation and consumption of the all-pair subsequence distances,
putting the focus on the distance matrix itself. This allows for easier and more flexible
experiments by freely combining components and eliminates the need to re-implement
algorithms to combine techniques in an efficient way. The extensions of theMatrix Pro-
file can be fitted in this framework as (part of) a SDM-generator or SDM-consumer.
Furthermore, we suspect new techniques will be discovered by further studying the
properties of the distance matrix in future work.

We introduced one additional SDM-consumer, namely the Contextual Matrix Pro-
file (CMP). The CMP processes rectangular areas of the distance matrix, compared
to the Matrix Profile processing columns. As a result, the CMP is able to compare a
range of subsequences against many other ranges, rather than only tracking the best
match.

We proved the utility of the CMP for two use cases. When used for data visualiza-
tion, the CMPwas able to reveal repetitive and deviating patterns in the data, making it
an ideal first step for data exploration, especially for data containing repetitive patterns.
When used for anomaly detection, we defined contexts based on our expectations of the
data and were able to find anomalies in the contexts not matching those expectations.
Unlike the Matrix Profile, the CMP is able to detect anomalies that are not discords.
Both cases were demonstrated on the New York Taxi dataset and a proprietary ven-
tilation metric dataset. In the former, we were able to reasonably explain all patterns
and anomalies. In the latter, we showed the visual difference between different venti-
lation units and relied on the time shift capability of the CMP to discover anomalous
mornings.

As part of this publication, we have released a Python implementation of the SDM
framework, already comprising implementations for a substantial set of related work.
Furthermore, the source code for all use case related processing has been made avail-
able online [25].



REFERENCES 79

References

[1] IoT Analytics. State of the IoT 2018: Number of IoT devices now at 7B – Mar-
ket accelerating. https://iot- analytics.com/state- of- the- iot-
update-q1-q2-2018-number-of-iot-devices-now-7b/. Aug. 2018.

[2] Eamonn Keogh, LiWei, Xiaopeng Xi, Sang-hee Lee, andMichail Vlachos. “LB
_ Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Ar-
bitrary Representations and DistanceMeasures”. In: Proc. of the 32nd Int. Conf.
on Very Large Data Bases. Seoul, Korea: VLDB Endowment, 2006, pp. 882–
893. isbn: 1595933859. url: http://dl.acm.org/citation.cfm?id=
1182635.1164203.

[3] Yaguo Lei, Naipeng Li, Liang Guo, Ningbo Li, Tao Yan, and Jing Lin. “Machin-
ery health prognostics: A systematic review from data acquisition to RUL pre-
diction”. In: Mechanical Systems and Signal Processing 104 (2018), pp. 799–
834. issn: 10961216. doi: 10.1016/j.ymssp.2017.11.016. url: https:
//doi.org/10.1016/j.ymssp.2017.11.016.

[4] D Vries, B. van den Akker, E. Vonk, W. de Jong, and J. van Summeren. “Ap-
plication of machine learning techniques to predict anomalies in water supply
networks”. In: Water Science and Technology: Water Supply 16.6 (Dec. 2016),
pp. 1528–1535. issn: 1606-9749. doi: 10.2166/ws.2016.062. url: http:
//ws.iwaponline.com/cgi/doi/10.2166/ws.2016.062.

[5] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei
Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn
Keogh. “Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying
View That Includes Motifs, Discords and Shapelets”. In: 2016 IEEE 16th Int.
Conf. on Data Mining (ICDM). IEEE, Dec. 2016, pp. 1317–1322. isbn: 978-1-
5090-5473-2. doi: 10.1109/ICDM.2016.0179. url: http://ieeexplore.
ieee.org/document/7837992/.

[6] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael
Yeh, Gareth Funning, Philip Brisk, and Eamonn Keogh. “Matrix Profile II :
Exploiting a Novel Algorithm and GPUs to Break the One Hundred Million
Barrier for Time Series Motifs and Joins”. In: 2016 IEEE 16th Int. Conf. on
Data Mining (ICDM) (2016), pp. 739–748. doi: 10.1109/ICDM.2016.126.

[7] Chin-Chia Michael Yeh, Helga Van Herle, and Eamonn Keogh. “Matrix profile
III: The matrix profile allows visualization of salient subsequences in massive
time series”. In: Proceedings - IEEE Int. Conf. on Data Mining, ICDM (2017),
pp. 579–588. issn: 2374-8486. doi: 10.1109/ICDM.2016.0069.

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
http://dl.acm.org/citation.cfm?id=1182635.1164203
http://dl.acm.org/citation.cfm?id=1182635.1164203
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.2166/ws.2016.062
http://ws.iwaponline.com/cgi/doi/10.2166/ws.2016.062
http://ws.iwaponline.com/cgi/doi/10.2166/ws.2016.062
https://doi.org/10.1109/ICDM.2016.0179
http://ieeexplore.ieee.org/document/7837992/
http://ieeexplore.ieee.org/document/7837992/
https://doi.org/10.1109/ICDM.2016.126
https://doi.org/10.1109/ICDM.2016.0069


80 CHAPTER 3. A GENERALIZED MATRIX PROFILE FRAMEWORK

[8] Chin-Chia Michael Yeh, Nickolas Kavantzas, and Eamonn Keogh. “Matrix pro-
file IV: Using Weakly Labeled Time Series to Predict Outcomes”. In: Proc. of
the VLDB Endowment 10.12 (Aug. 2017), pp. 1802–1812. issn: 21508097. doi:
10.14778/3137765.3137784. url: http://www.vldb.org/pvldb/
vol10/p1802-yeh.pdf%20http://dl.acm.org/citation.cfm?doid=
3137765.3137784.

[9] Hoang Anh Dau and Eamonn Keogh. “Matrix Profile V: A Generic Tech-
nique to Incorporate Domain Knowledge into Motif Discovery”. In: Proc. of
the 23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining -
KDD ’17. New York, New York, USA: ACM Press, 2017, pp. 125–134. isbn:
9781450348874. doi: 10.1145/3097983.3097993. url: http://dl.acm.
org/citation.cfm?doid=3097983.3097993.

[10] Chin-ChiaMichael Yeh, Nickolas Kavantzas, and Eamonn Keogh. “Matrix Pro-
file VI: Meaningful Multidimensional Motif Discovery”. In: 2017 IEEE Int.
Conf. on Data Mining (ICDM). IEEE, Nov. 2017, pp. 565–574. isbn: 978-1-
5386-3835-4. doi: 10.1109/ICDM.2017.66. url: http://ieeexplore.
ieee.org/document/8215529/.

[11] Yan Zhu, Makoto Imamura, Daniel Nikovski, and Eamonn Keogh. “Matrix Pro-
file VII: Time Series Chains: A New Primitive for Time Series Data Mining”.
In: 2017 IEEE Int. Conf. on Data Mining (ICDM). IEEE, Nov. 2017, pp. 695–
704. isbn: 978-1-5386-3835-4. doi: 10.1109/ICDM.2017.79. url: http:
//ieeexplore.ieee.org/document/8215542/.

[12] Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar,
Liudmila Ulanova, and Eamonn Keogh. “Matrix Profile VIII: Domain Agnos-
tic Online Semantic Segmentation at Superhuman Performance Levels”. In:
2017 IEEE Int. Conf. on Data Mining (ICDM). IEEE, Nov. 2017, pp. 117–
126. isbn: 978-1-5386-3835-4. doi: 10.1109/ICDM.2017.21. url: http:
//ieeexplore.ieee.org/document/8215484/.

[13] Reza Akbarinia and Bertrand Cloez. “Efficient Matrix Profile Computation Us-
ing Different Distance Functions”. 2019. url: https://arxiv.org/abs/
1901.05708.

[14] Diego Furtado Silva and Gustavo E. A. P. A. Batista. “Elastic Time Series Mo-
tifs and Discords”. In: 2018 17th IEEE Int. Conf. on Machine Learning and Ap-
plications (ICMLA). IEEE, Dec. 2018, pp. 237–242. isbn: 978-1-5386-6805-4.
doi: 10.1109/ICMLA.2018.00042. url: https://ieeexplore.ieee.
org/document/8614067/.

[15] Dieter De Paepe, Olivier Janssens, and Sofie Van Hoecke. “Eliminating Noise
in the Matrix Profile”. In: Proceedings of the 8th Int. Conf. on Pattern
Recognition Applications and Methods. SCITEPRESS - Science and Tech-
nology Publications, 2019, pp. 83–93. isbn: 978-989-758-351-3. doi: 10 .

https://doi.org/10.14778/3137765.3137784
http://www.vldb.org/pvldb/vol10/p1802-yeh.pdf%20http://dl.acm.org/citation.cfm?doid=3137765.3137784
http://www.vldb.org/pvldb/vol10/p1802-yeh.pdf%20http://dl.acm.org/citation.cfm?doid=3137765.3137784
http://www.vldb.org/pvldb/vol10/p1802-yeh.pdf%20http://dl.acm.org/citation.cfm?doid=3137765.3137784
https://doi.org/10.1145/3097983.3097993
http://dl.acm.org/citation.cfm?doid=3097983.3097993
http://dl.acm.org/citation.cfm?doid=3097983.3097993
https://doi.org/10.1109/ICDM.2017.66
http://ieeexplore.ieee.org/document/8215529/
http://ieeexplore.ieee.org/document/8215529/
https://doi.org/10.1109/ICDM.2017.79
http://ieeexplore.ieee.org/document/8215542/
http://ieeexplore.ieee.org/document/8215542/
https://doi.org/10.1109/ICDM.2017.21
http://ieeexplore.ieee.org/document/8215484/
http://ieeexplore.ieee.org/document/8215484/
https://arxiv.org/abs/1901.05708
https://arxiv.org/abs/1901.05708
https://doi.org/10.1109/ICMLA.2018.00042
https://ieeexplore.ieee.org/document/8614067/
https://ieeexplore.ieee.org/document/8614067/
https://doi.org/10.5220/0007314100830093
https://doi.org/10.5220/0007314100830093
https://doi.org/10.5220/0007314100830093


REFERENCES 81

5220 / 0007314100830093. url: http : / / www . scitepress . org /
DigitalLibrary/Link.aspx?doi=10.5220/0007314100830093.

[16] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and
Eamonn Keogh. “Matrix Profile XI: SCRIMP++: Time Series Motif Discov-
ery at Interactive Speeds”. In: 2018 IEEE Int. Conf. on Data Mining (ICDM).
IEEE, Nov. 2018, pp. 837–846. isbn: 978-1-5386-9159-5. doi: 10 . 1109 /
ICDM.2018.00099. url: https://ieeexplore.ieee.org/document/
8594908/.

[17] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn Keogh. “Matrix Pro-
file X”. In: Proc. of the 2018 Int. Conf. on Management of Data - SIGMOD
’18. ACM Press, 2018, pp. 1053–1066. isbn: 9781450347037. doi: 10.1145/
3183713.3183744. url: http://dl.acm.org/citation.cfm?doid=
3183713.3183744.

[18] Eamonn Keogh and Shruti Kasetty. “On the need for time series data mining
benchmarks”. In: Proc. of the 8th ACM SIGKDD Int. Conf. on Knowledge dis-
covery and data mining - KDD ’02 (2002), p. 102. issn: 13845810. doi: 10.
1145/775047.775062. url: http://portal.acm.org/citation.cfm?
doid=775047.775062.

[19] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy
Viswanathan, Chetan Gupta, and Eamonn Keogh. The Fastest Similarity Search
Algorithm for Time Series Subsequences under Euclidean Distance. http://
www.cs.unm.edu/~mueen/FastestSimilaritySearch.html. Aug. 2017.

[20] Dieter De Paepe, Diego Nieves Avendano, and Sofie Van Hoecke. “Implications
of Z-Normalization in the Matrix Profile”. In: Pattern Recognition Applications
andMethods. Ed. byMaria DeMarsico, Gabriella Sanniti di Baja, andAna Fred.
Cham: Springer International Publishing, 2020, pp. 95–118. isbn: 978-3-030-
40014-9. doi: https://doi.org/10.1007/978-3-030-40014-9_5.

[21] Yan Zhu, AbdullahMueen, and EamonnKeogh. “Admissible Time SeriesMotif
Discovery with Missing Data”. In: (2018). arXiv: 1802.05472. url: %5Curl%
7Bhttps://arxiv.org/pdf/1802.05472.pdf%7D.

[22] Diego F Silva, Chin-chia M Yeh, Yan Zhu, Gustavo E A P A Batista, and Ea-
monn Keogh. “Fast Similarity Matrix Profile for Music Analysis and Explo-
ration”. In: IEEE Transactions on Multimedia 21.1 (Jan. 2019), pp. 29–38.
issn: 1520-9210. doi: 10 . 1109 / TMM . 2018 . 2849563. url: https : / /
ieeexplore.ieee.org/document/8392419/.

[23] Shima Imani, Frank Madrid, Wei Ding, Scott Crouter, and Eamonn Keogh.
“Matrix Profile XIII: Time Series Snippets: A New Primitive for Time Series
Data Mining”. In: 2018 IEEE Int. Conf. on Big Knowledge (ICBK). IEEE, Nov.
2018, pp. 382–389. isbn: 978-1-5386-9125-0. doi: 10.1109/ICBK.2018.
00058. url: https://ieeexplore.ieee.org/document/8588817/.

https://doi.org/10.5220/0007314100830093
https://doi.org/10.5220/0007314100830093
https://doi.org/10.5220/0007314100830093
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007314100830093
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007314100830093
https://doi.org/10.1109/ICDM.2018.00099
https://doi.org/10.1109/ICDM.2018.00099
https://ieeexplore.ieee.org/document/8594908/
https://ieeexplore.ieee.org/document/8594908/
https://doi.org/10.1145/3183713.3183744
https://doi.org/10.1145/3183713.3183744
http://dl.acm.org/citation.cfm?doid=3183713.3183744
http://dl.acm.org/citation.cfm?doid=3183713.3183744
https://doi.org/10.1145/775047.775062
https://doi.org/10.1145/775047.775062
http://portal.acm.org/citation.cfm?doid=775047.775062
http://portal.acm.org/citation.cfm?doid=775047.775062
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
https://doi.org/https://doi.org/10.1007/978-3-030-40014-9_5
https://arxiv.org/abs/1802.05472
%5Curl%7Bhttps://arxiv.org/pdf/1802.05472.pdf%7D
%5Curl%7Bhttps://arxiv.org/pdf/1802.05472.pdf%7D
https://doi.org/10.1109/TMM.2018.2849563
https://ieeexplore.ieee.org/document/8392419/
https://ieeexplore.ieee.org/document/8392419/
https://doi.org/10.1109/ICBK.2018.00058
https://doi.org/10.1109/ICBK.2018.00058
https://ieeexplore.ieee.org/document/8588817/


82 CHAPTER 3. A GENERALIZED MATRIX PROFILE FRAMEWORK

[24] Shaghayegh Gharghabi, Shima Imani, Anthony Bagnall, Amirali Darvishzadeh,
and Eamonn Keogh. “Matrix Profile XII: MPdist: A Novel Time Series Dis-
tance Measure to Allow Data Mining in More Challenging Scenarios”. In: 2018
IEEE Int. Conf. on Data Mining (ICDM). IEEE, Nov. 2018, pp. 965–970. isbn:
978-1-5386-9159-5. doi: 10 . 1109 / ICDM . 2018 . 00119. url: https : / /
ieeexplore.ieee.org/document/8594928/.

[25] Source code for our experiments. https : / / sites . google . com / view /
generalizing-matrix-profile. 2019.

[26] Alexander Lavin and Subutai Ahmad. “Evaluating Real-Time Anomaly Detec-
tion Algorithms – The Numenta Anomaly Benchmark”. In: 2015 IEEE 14th
Int. Conf. on Machine Learning and Applications. IEEE, Dec. 2015, pp. 38–44.
isbn: 978-1-5090-0287-0. doi: 10.1109/ICMLA.2015.141. arXiv: 1510.
03336. url: http://ieeexplore.ieee.org/document/7424283/.

[27] Nitin Kumar, Venkata Nishanth Lolla, Eamonn Keogh, Stefano Lonardi, Choti-
rat Ann Ratanamahatana, and Li Wei. “Time-series Bitmaps: a Practical Vi-
sualization Tool for Working with Large Time Series Databases”. In: Proc. of
the 2005 SIAM Int. Conf. on Data Mining. Society for Industrial and Applied
Mathematics, Apr. 2005, pp. 531–535. isbn: 9781491917022. doi: 10.1137/
1.9781611972757.55. url: http://epubs.siam.org/doi/abs/10.
1137/1.9781611972757.55.

[28] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A
survey”. In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[29] Haemwaan Sivaraks and Chotirat Ann Ratanamahatana. “Robust and accu-
rate anomaly detection in ECG artifacts using time series motif discovery”.
In: Computational and Mathematical Methods in Medicine 2015 (2015). issn:
17486718. doi: 10.1155/2015/453214.

https://doi.org/10.1109/ICDM.2018.00119
https://ieeexplore.ieee.org/document/8594928/
https://ieeexplore.ieee.org/document/8594928/
https://sites.google.com/view/generalizing-matrix-profile
https://sites.google.com/view/generalizing-matrix-profile
https://doi.org/10.1109/ICMLA.2015.141
https://arxiv.org/abs/1510.03336
https://arxiv.org/abs/1510.03336
http://ieeexplore.ieee.org/document/7424283/
https://doi.org/10.1137/1.9781611972757.55
https://doi.org/10.1137/1.9781611972757.55
http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.55
http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.55
https://doi.org/10.1155/2015/453214


Chapter 4

Implications of Z-Normalization in the
Matrix Profile

Many data analytics methods for time series deal in some way with the concept of simi-
larity between subsequences, and consequently, with distance measures that determine
this similarity. Chapter 1 gave an overview of several commonly used measures, each
having distinctive properties. The z-normalized Euclidean distance, which was the
original distance measure used for the matrix profile, is a measure that mainly captures
similarities in the pattern (or shape) of subsequences. It has been applied to a wide va-
riety of use cases, and is intuitive for users due to the visual similarity of sequences
with distinct patterns. However, when sequences lack these distinct patterns, similar-
ity becomes counter-intuitive because the considered shape originates from the noise
present in the signal. This in turn negatively affects all data analytics techniques where
the analyzed signal contains parts lacking distinct patterns. This chapter discusses a
method to restore the applicability of these techniques for such cases. Furthermore, it
studies other properties of this measure as well, such as the close link with the Pearson
correlation coefficient.

My contributions can be summarized as follows:

1. Discussion of known properties of the Pearson correlation and z-normalized
Euclidean distance measure in the context of pattern matching. One direct ap-
plication is a method to normalize distances, irrespective of sequence length.

2. Analytical derivation of a method to estimate the effect of noise on the z-
normalized Euclidean distance, and providing a method to correct for this effect.

3. Demonstration of the benefits for time series anomaly detection, segmentation
and visualization.
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Abstract Companies are increasingly measuring their products and services, resulting
in a rising amount of available time series data, making techniques to extract usable
information needed. One state-of-the-art technique for time series is the Matrix Pro-
file, which has been used for various applications including motif/discord discovery,
visualizations and semantic segmentation. Internally, the Matrix Profile utilizes the z-
normalized Euclidean distance to compare the shape of subsequences between two se-
ries. However, when comparing subsequences that are relatively flat and contain noise,
the resulting distance is high despite the visual similarity of these subsequences. This
property violates some of the assumptions made by Matrix Profile based techniques,
resulting in worse performance when series contain flat and noisy subsequences. By
studying the properties of the z-normalized Euclidean distance, we derived a method
to eliminate this effect requiring only an estimate of the standard deviation of the noise.
In this chapter we describe various practical properties of the z-normalized Euclidean
distance and show how these can be used to correct the performance of Matrix Profile
related techniques. We demonstrate our techniques using anomaly detection using a
Yahoo! Webscope anomaly dataset, semantic segmentation on the PAMAP2 activity
dataset and for data visualization on a UCI activity dataset, all containing real-world
data, and obtain overall better results after applying our technique. Our technique is
a straightforward extension of the distance calculation in the Matrix Profile and will
benefit any derived technique dealing with time series containing flat and noisy sub-
sequences.

4.1 Introduction

With the lower cost of sensors and according rise of IoT and Industrial IoT, the amount
of data available as time series is rapidly increasing due to rising interest of compa-
nies to gain new insights about their products or services, for example to do pattern
discovery [1], user load prediction or anomaly detection [2].

TheMatrix profile is state-of-the-art technique for time series data that is calculated
using two time series and a provided subsequence length. It is a one-dimensional series
where each data point at a given index represents the Euclidean distance between the
z-normalized (zero mean and unit variance) subsequence starting at that index in the
first time series and the best matching (lowest distance) z-normalized subsequence in
the second time series. Both inputs can be the same, meaning matches are searched for
in the same time series. The Matrix Profile Index, which is calculated alongside the
Matrix Profile, contains the location of the best match (in the second series) for each
subsequence.
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The Matrix Profile can be used to find the best matching subsequence in a series,
i.e. motif discovery, or to find the subsequence with the largest distance to its nearest
match, i.e. discord discovery. It also serves as a building block for other techniques
such as segmentation [3], visualizing time series using Multidimensional Scaling [4]
or finding gradually changing patterns in time series [5].

The usage of the z-normalized Euclidean distance can be explained by two factors.
First, the MASS algorithm [6] was a known method to calculate the z-normalized
distance between a sequence of length m and all subsequences obtained by sliding
a window of length m over a longer sequence of length n. MASS was a vital part
of the original method to calculate the Matrix Profile in reasonable time. Secondly,
the z-normalized Euclidean distance can be seen as a two-step process to compare the
shape of two sequences: the z-normalization transforms each sequence to their normal
form, which captures their shape, after which the Euclidean distance compares both
shapes. This makes the Matrix Profile well suited for finding patterns in data where a
wandering baseline is present, as often occurs in signals coming from natural sources
or due to uncalibrated sensors, or where patterns manifest with different amplitudes,
which can occur by subtle changes in the underlying system or when comparing signals
from different sources.

Although z-normalization is important when comparing time series [7], it has one
major downside: when dealing with flat sequences, any fluctuations (such as noise)
are enhanced, resulting in high values in the Matrix Profile. This behavior conflicts
with our human intuition of similarity and can have an adverse effect on techniques
based on the Matrix Profile. A preliminary example of this can be seen in Figure 4.2,
where a discord that is easily detectable using the Matrix Profile becomes hidden once
noise is added to the signal. Previous literature has mainly avoided cases with series
containing flat and noisy regions, most likely due to this effect.

This chapter is an extended version of our previous work [8]. In this version, we
elaborate less on the many merits of the Matrix Profile and instead discuss several
properties of the z-normalized distance relevant for the Matrix Profile. Furthermore,
we have used a new dataset from Yahoo! Webscope in our anomaly detection use case
and introduced a new visualization use case.

This chapter is structured as follows: Section 4.2 lists literature related to the Ma-
trix Profile. Section 4.3 discusses several properties of the z-normalized Euclidean
distance that are either directly relevant when using the Matrix Profile or are used in
our main contribution. Section 4.4 provides detail on the effect of flat, noisy subse-
quences in the Matrix Profile, as well as our solution to compensate for this effect. We
demonstrate our technique for anomaly detection in Section 4.5, for semantic segmen-
tation in Section 4.6, on data visualization in Section 4.7 and conclude our work in
Section 4.8.
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4.2 Related Work

In this section, we focus on works related to the Matrix Profile, introduced by Yeh
et al. [9] as a new time-series analysis building block, together with the STAMP and
STAMPI algorithm to calculate the Matrix Profile in batch or incremental steps re-
spectively.

Internally, STAMP uses the z-normalized Euclidean distance metric to compare
subsequences. Originally, all subsequences were compared using the MASS algo-
rithm [6] allowing the Matrix Profile to be calculated inO(n2 logn), with n being the
length of the series. The later introduced STOMP and SCRIMP algorithms [10, 11]
reduced the runtime to O(n2) for both batch and incremental calculation respectively
by applying dynamic programming techniques.

Various variations or enhancements of the Matrix Profile have been published.
When users want to track the best earlier and later match of each subsequence, rather
than the best global match, the left and right Matrix Profile can be calculated in-
stead [5]. The Multidimensional Matrix Profile tracks the best matches between time-
series containing multiple channels [12]. Zhu et al. have suggested a way to calculate
the Matrix Profile when the data contains missing values, using knowledge about the
range of the data [13]. Lastly, we presented the Contextual Matrix Profile [14] as a
generalization of the Matrix Profile that is capable of tracking multiple matches over
configurable time spans.

Different distance measures have also been proposed for the Matrix Profile. The
Euclidean distance or more general p-norm, might be useful in areas such as finances,
engineering, physics or statistics [15]. A distance measure that performs a non-linear
transformation along the time axis and can ignore the prefix or suffix of sequences
being matched, based on Dynamic TimeWarping, has been suggested by Furtado Silva
et al. [16]. Recently, we suggested the Series Distance Matrix framework [14] as a way
to easily combine different distance measures with the techniques processing these
distances in a plug-and-play way.

Once the Matrix Profile and corresponding Matrix Profile index have been calcu-
lated, they can be used for motif or discord discovery. In case the user wants to focus
on specific parts of the signal, for example based on time regions or high-variance pe-
riods in the signal, they can shift the Matrix Profile using the Annotation Vector [17],
allowing them to find different sets of discords or motifs.

The Matrix Profile can also be used as a building block for other techniques. Time
Series Chains are slowly changing patterns that occur throughout a time series and can
be found by analyzing the left and right Matrix Profile [5]. Time series segmentation
involves detecting changes in the underlying behavior of a time series and is possible
using the offline FLUSS or online FLOSS algorithm [3], which investigate the number
of arcs defined by the Matrix Profile index to detect likely transitions. Classification of
time series is possible through a dictionary of identifying patterns discovered through
theMatrix Profile [18]. TheMatrix Profile has also been shown useful for MDS, a data
exploration technique that does not work well when visualizing all subsequences in a
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series, by selecting representative subsequences of series [4]. Lastly, MPDist [19], a
distancemeasure that treats sequences similar if they sharemany similar subsequences,
is calculated using the Matrix Profile and has been used to summarize large datasets
for visualisation and exploration [20].

The Matrix Profile has been used in various techniques across many domains.
However, series where flat and noisy regions are present have been mostly avoided
in related literature, most likely due to the issue mentioned in Section 4.1. We suspect
this issue affects any Matrix Profile based technique using the z-normalized Euclidean
distance, and will especially have a negative impact on techniques dealing with discord
discovery (such as anomaly detection) or techniques involving matches made on flat
sequences (such as the assumption of motifs being present in homogeneous regions
when performing time series segmentation). To the best of our knowledge, this issue
has not yet been discussed or solved prior to our work. We show how to solve this is-
sue in Section 4.4, after first discussing several relevant properties of the z-normalized
distance measure in Section 4.3.

4.3 Properties of the Z-normalized Euclidean Distance

This section gathers aspects of the z-normalized Euclidean distance that are relevant for
the remainder of this chapter or when working with theMatrix Profile in general. Some
properties listed here are obtainable through straightforward mathematical derivation
of previously published properties, but have not yet been mentioned in Matrix Profile
related literature, despite their high relevance.

4.3.1 Definition

The z-normalized Euclidean distanceDze is defined as the Euclidean distanceDe be-
tween the z-normalized or normal form of two sequences, where the z-normalized form
X̂ is obtained by transforming a sequence X of length m so it has mean µ = 0 and
standard deviation σ = 1.

X̂ = X − µX
σX

Dze(X,Y ) = De(X̂, Ŷ ) =
√

(x̂1 − ŷ1)2 + . . .+ (x̂m − ŷm)2

4.3.2 Link with Pearson Correlation Coefficient

The z-normalized Euclidean distance between two sequences of length m is in fact
a function of the correlation between the two sequences, as originally mentioned by
Rafiei D. [21], though without the derivation we provide below.

Dze(X,Y ) =
√

2m(1− corr(X,Y ))
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To derive this property, we first highlight the following property of the inner prod-
uct of a z-normalized sequence with itself:

σ2
X =

∑m
i (xi − µX)2

m

m =
m∑
i

(
xi − µX
σX

)2

Using this, we can derive the equality as follows:

Dze(X,Y )2 =
m∑
i

(
xi − µX
σX

− yi − µY
σY

)2

=
m∑
i

(
x− µX
σX

)2
+

m∑
i

(
y − µY
σY

)2
− 2

m∑
i

(
x− µX
σX

)(
y − µY
σY

)

= 2m
(

1− 1
m

m∑
i

(
x− µX
σX

)(
y − µY
σY

))
= 2m(1− corr(X,Y ))

4.3.3 Distance Bounds

Since the correlation is limited to the range [−1, 1], the Dze between two sequences
of length m will fall in the range [0, 2

√
m], where zero indicates a perfect match and

2
√
m corresponds to the worst possible match.
As a result, the upper bound of 2

√
m can be used to normalize distances to the

range [0, 1], allowing us to compare matches of different lengths and enabling us to
define and reuse thresholds to define degrees of similarity when usingDze. This way,
we can define a more uniform similarity threshold (e.g.: 0.3) for sequences of any
length rather than specifying a threshold that is dependent onm (e.g.: a threshold of 3
for sequences of length 25, 6 for sequences of length 100 and so on). Note that Linardi
et al. [22] had already pragmatically found the normalization factor

√
m to compare

matches of different lengths, though without making the connection to the underlying
mathematics.

4.3.4 Best and Worst Matches

The distance bounds ofDze of 0 and 2
√
m correspond to correlation coefficients of 1

and −1 respectively. This means that for any sequence X of length m with σX 6= 0,
Dze(X,Y ) = 0 and Dze(X,Z) = 2

√
m if:
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Y = aX + b

Z = −aX + b

for any values of a and b, where a > 0.

4.3.5 Effects of Noise on Self-Similarity
If we have a base sequence S ∈ Rm and two noise sequences N ∈ Rm and N ′ ∈ Rm
sampled from a normal distribution N

(
0, σ2

N

)
, then the expected distance between

the two sequences obtained by adding the noise to the base sequence can be expressed
as follows:

X = S +N

Y = S +N ′

E
[
Dze (X,Y )2

]
= (2m+ 2) σ2

N

σ2
S + σ2

N

(4.1)

Note that in (4.1), σ2
N is the variance of the noise and σ2

S + σ2
N is the expected

variance of either noisy sequence. We apply the derivation below, originally published
in our previous work [8]. For the remainder of this section, we treat the sequences as
random variables.

E
[
Dze(X,Y )2] = E

[
(x̂1 − ŷ1)2 + . . .+ (x̂m − ŷm)2]

= m · E
[
(x̂− ŷ)2]

= m · E

[(
x− µX
σX

− y − µY
σY

)2
] (4.2)

SinceX and Y are the sum of the same two uncorrelated variables, they both have
the same variance.

σ2
X = σ2

Y = σ2
S + σ2

N (4.3)

Next, we decompose µX and µY in the component from the original sequence µS
and the influence of the noise. Here we use n as a random variable sampled from the
noise distribution. Note that µS can be seen as a constant as it refers to the mean of
the base sequence.

µX = µY = µS + n1 + . . .+ nm
m

= µS + µN

µN ∼ N
(

0, σ
2
N

m

) (4.4)
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We perform the same decomposition for x and y, where s is an unknown constant
originating from the base sequence:

x = y = s+ n

n ∼ N
(
0, σ2

N

) (4.5)

Using (4.3), (4.4) and (4.5) in (4.2), canceling out constant terms and merging the
distributions results in:

E
[
Dze(X,Y )2] = m · E

(nx − ny − µNx + µNy√
σ2
S + σ2

N

)2


= m · E
[
(ν)2

]
ν ∼ N

(
0, 2 + 2m

m
· σ2

N

σ2
S + σ2

N

) (4.6)

To finish, we apply the theorem E[X2] = var(X) + E[X]2:

E
[
Dze(X,Y )2] = (2m+ 2) · σ2

N

σ2
S + σ2

N

(4.7)

4.4 Flat Subsequences in the Matrix Profile

While the utility of the z-normalized Euclidean distance as a shape-comparator has
been proven by the many Matrix Profile related publications [4, 5, 22], results become
counter-intuitive for sequences that contain subsequences that are flat, with a small
amount of noise. While humans would consider such sequences as similar, the z-
normalized Euclidean distance will be very high.

We can explain this effect in two ways and demonstrate this in Figure 4.1, where
we visualize three pairs of noisy sequences that only differ by their slope. First, con-
sidering the Euclidean distance on z-normalized sequences, we can see in Figure 4.1
(middle) how the effect of noise becomes more outspoken for flatter sequences due to
the normalization, resulting in a high Euclidean distance. Alternatively, we can con-
sider the correlation of both sequences, as mentioned in Section 4.3.2. Looking at both
sequences as a collection of points, shown in Figure 4.1 (bottom), we can see that flatter
sequences more closely resemble the random distribution of the underlying noise and
are therefor less correlated. Since a correlation of zero corresponds to a z-normalized
Euclidean distance of

√
2m, or 1√

2 ≈ 0.707 if we rescale this value using the distance
bounds mentioned in Section 4.3.3, we can see that uncorrelated sequences will have
a high distance.
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Figure 4.1: Three pairs of sequences with varying slopes, each pair has the same noise profile.
By looking at the effect of the noise in the z-normalized sequences, we see why the Euclidean
distance will returnmuch larger distances for flat sequences. At the bottomwe see a visualization
of the correlation between both sequences, where we see that the slope of the signal has a major
influence on the corresponding correlation.

The effect of flat, noisy subsequences will have a negative effect on some use cases
of the Matrix Profile. Since the flat sequences result in high Matrix Profile values
where we would intuitively expect low values, we can estimate which use cases will
suffer and which will not. For example, anomaly detection or discord discovery using
the Matrix Profile involves finding the highest values in the Matrix Profile. When flat,
noisy sequences are present, true discords may be hidden by this effect. Another exam-
ple is the semantic segmentation technique using the Matrix Profile [3], this technique
detects transitions in a signal by analyzing the matches of each subsequence, assum-
ing homogeneous regions will contain many good matches. In this case, homogeneous
regions containing flat and noisy sequences will result in poor matches, violating the
base principle of the segmentation technique. Notably, motif detection will not suffer
from this issue, assuming the user is not interested in flat motifs.

Next, we will discuss seemingly useful resolutions that do not actually manage to
solve this effect before presenting our own solution. First however, we introduce a
synthetic dataset that will serve as our running example in this section.

4.4.1 Running Example

We generated a sinusoid signal of 2000 samples and introduced an anomaly in one of
the slopes by increasing the value of 10 consecutive values by 0.5 and create a noisy
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Figure 4.2: Top: Sinusoid signal without (left) and with (right) added Gaussian noise. An
anomaly of length 10 (red) was introduced at index 950. Bottom: Corresponding Matrix Profile
for both signals, rescaled using the method of Section 4.3.3. The top discord is marked in gray.
As can be seen, the presence of noise increases the Matrix Profile values of the flat regions to the
degree that they now hide the true anomaly. This figure is modified from our previous work [8].

copy by adding Gaussian noise sampled from N (0, 0.01). The Matrix Profile for
both signals was calculated using a subsequence length m of 100 and a trivial match
buffer of m2 , as recommended in [9]. The signal and corresponding Matrix Profile are
displayed in Figure 4.2. For the noise-free signal, we see exact matches (distance equal
to zero) everywhere except in the region containing the anomaly. For the noisy signal,
we see how the Matrix Profile has shifted upwards, as would be expected since exact
matches are no longer possible. However, we also see previously non-existing peaks
in the Matrix Profile where the signal was more flat, because of this the anomaly is no
longer trivial to locate automatically.

Let us briefly further investigate how the properties of the noise affect the Matrix
Profile in this example. Figure 4.3 displays our starting sinusoidal signal with anomaly,
to which Gaussian noise sampled from different distributions was added. As expected,
we see that as the variation of the noise increases, the Matrix Profile becomes more
deformed. The anomaly is no longer visually obvious in the Matrix Profile for noise
with standard deviation of 0.05 ormore. Somewhat surprising is how quickly this effect
becomes apparent: when the noise has a standard deviation of around 0.02 (at this
point the signal-to-noise ratio is 1250 or 31 dB), the anomaly is already occasionally
overtaken as the top discord by the flat subsequences (depending on the sampling of
the noise).

Before coming to our solution, we will discuss why some simple, seemingly useful
methods to circumvent this problem do not work.

• Changing the subsequence length m: asm becomes smaller, the effect of any
anomaly on the Matrix Profile will indeed increase. However, as the subse-
quences become shorter and relatively flatter as a result, the effect of the noise
also becomes bigger, resulting in a more eratic Matrix Profile. Increasingmwill
have a beneficial effect, but this is simply because the longer subsequences will
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Figure 4.3: A demonstration of the effect of varying degrees of noise on the Matrix Profile.
Left: the sinusoidal signal with noise sampled from various Gaussian distributions. Right: The
corresponding rescaled Matrix Profile. This figure is modified from our previous work [8].

become less flat in this specific example, so this is not a general solution. This
approach is demonstrated in Figure 4.4 (top left).

• Ignoring flat sections: ignoring subsequenceswhose variance is below a certain
value would result in the removal of the peaks in the Matrix Profile. A first
problem with this is that finding the correct cutoff value is not trivial. Secondly,
this approach will not be applicable in datasets where the flat subsequences are
regions of interest, either as anomalies or for finding similar subsequences, as is
demonstrated in the time series segmentation of Section 4.6. This approach is
visualized in Figure 4.4 (middle left).

• Smoothing or filtering: by preprocessing the noisy signal, one could hope to
remove the noise altogether. Unfortunately, unless the specifics of the noise are
well known and the noise can be completely separated from the signal, there will
always remain an amount of noise. As was shown in Figure 4.3, even a small
amount of noise can have a large effect on the Matrix Profile. This approach is
demonstrated in Figure 4.4 (bottom left).

4.4.2 Eliminating the Effect of Noise

Ideally, we want flat subsequences to have good matches with other flat subsequences.
This would be the case if those flat subsequences were stretched and/or shifted versions
of one another, as mentioned in Section 4.3.4. Unfortunately, this is not the case due
to the effects of noise. We can however, still consider them to be identical, in which
case we can use our derivation from Section 4.3.5, which estimates the effect of the
noise on the z-normalized Euclidean distance. By subtracting this estimate during the
calculation of the Matrix Profile, we are actively negating the effects of the noise. The
only requirement is that we known the standard deviation of the noise that is present
in the signal. This may be either known in advance or can be easily estimated by
analyzing a flat part of the signal. Note that we also need the standard deviation of
the subsequences being compared, but as these are already needed for the distance
calculation [10, 11], these are precalculated and available as part of the Matrix Profile
calculation.
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Figure 4.4: Left: The effects of several seemingly useful methods to combat the effect of
flat, noisy subsequences that in fact do not work. From top to bottom: reducing the subse-
quence length, ignoring flat sections and smoothing/filtering. None of these methods approach
the noise-free Matrix Profile. Right: The effect of our noise elimination technique on the Ma-
trix Profile. We see how the corrected Matrix Profile closely resembles the Matrix Profile of the
noise-free signal. This figure is modified from our previous work [8].

The algorithm is straightforward, after calculating the squared distance between
a pair of subsequences using any of the existing algorithms, we subtract the squared
estimate of the noise influence. We do this before the element-wise minimum is cal-
culated and stored in the Matrix Profile, because this correction might influence which
subsequence gets chosen as the best match. Pseudo code is listed in Algorithm 3 and
can run in O(1) runtime.

Algorithm 3: Algorithm for Eliminating the Effects of Noise
Input: d: distance between subsequence X and Y
Input: m: subsequence length
Input: σX , σY : standard deviation of subsequence X and Y
Input: σn: standard deviation the noise
Output: corrDist: corrected distance between subsequence X and Y

1 corrDist =
√
d2 − (2 +m) σ2

n

max(σX ,σY )2

The only difference between this code and the formula from Section 4.3.5 is that
we use the maximum standard deviation of both subsequences. When processing two
fundamentally different subsequences, this choice effectively minimizes the effect of
the noise elimination technique.

We demonstrate our technique on the running example in Figure 4.4 (right). We
see that unlike the previously methods, we can closely match the Matrix Profile of the
noise-free signal. We do see some small residual spikes, which appear depending on
the sampling of the noise, they are caused by local higher-than-expected noise values
in that part of the signal.

After demonstrating our noise elimination technique on a limited synthetic dataset,
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Figure 4.5: Extracts of four series from the Yahoo! Webscope anomaly dataset.

we will use the remainder of this chapter to prove the merit of our noise elimination
method for several use cases using real-world datasets.

4.5 Use Case: Anomaly Detection

One of the original applications for the Matrix Profile is the discovery of discords,
where a discord is the subsequence in a series that differs most from any other subse-
quence. Discords in fact correspond to the subsequences starting at the indices where
the Matrix Profile is highest. When interested in the top-k discords, one can take the
top-k values of theMatrix Profile where each value should be at leastm index positions
away from all previous discord locations. This requirement ensures we cannot select
overlapping subsequences as discords, as these basically represent the same anomaly
[23].

In this section we demonstrate the benefit of our noise elimination technique when
performing anomaly detection utilizing real-world data from Yahoo. In our previous
work [8], we performed a similar experiment using the “realAWSCloudwatch” collec-
tion from the Numenta Anomaly Benchmark [24].

We use the Labeled Anomaly Detection Dataset of Yahoo! Webscope, con-
sisting of both real and synthetic time-series. For this work we focus on the
“A1Benchmark” dataset, which contains real traffic metrics from Yahoo! services,
reported at hourly intervals. The benchmark consists of 67 time series with labeled
anomalies, ranging from 741 to 1461 data points. The time-series vary considerable,
containing diverse ranges, seasonality, trends, variance, among other properties. Fig-
ure 4.5 shows some examples.

Rather than classifying each point in the time series as anomalous or normal, which
would involve optimizing a classification threshold, we instead score performance by
counting the number of attempts needed before all anomalies in a series are reported, or
until 10 incorrect guesses are made, as was done in our previous work for the Numenta
benchmark [8]. This way of scoring resembles a user being alerted with suspected
anomalies, measuring the capability of the algorithm to present relevant anomalies.
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Figure 4.6: Two examples displaying the beneficial effect of our noise elimination on anomaly
detection. The anomalies are not noticeable in the regular Matrix Profile, but are obvious after
applying noise elimination.

We perform anomaly detection by self-joining each series with a subsequence
length of 24 (one day) and using the left Matrix Profile [5] for anomaly detection.
The left Matrix Profile only tracks matches preceding each subsequence, similar to
how streaming data is processed, and increases the chance to treat sudden changes as
discords.

Since we do not know the characteristics of the noise, we would need to estimate
the standard deviation using the signal. However, this is not a trivial task since we
do not known in advance which signals contain noise and which do not. Making an
inaccurate estimate by assuming a non-noisy signal is in fact noisy would result in poor
predictions.

To detect the presence of noise, we devised a heuristic wherewe evaluate theMatrix
Profile values of the first three days of data. If the average rescaledMatrix Profile value
is above a certain threshold, we assume the start of the data is noisy and we take the
median standard deviation of all subsequences in the first three days as noise parameter.
Based on the first 10 datasets and leaving all other datasets as test set, we manually
determined a threshold of 0.2.

This heuristic marked 34 out of 67 datasets as noisy. We compared the anomaly
detection results for these 34 datasets with andwithout our noise elimination technique.
The results are displayed in Table 4.1, they show that our noise elimination technique
performed better for 32 out of 34 datasets. On average, the regular Matrix Profile
found 36 out of a total of 84 anomalies using 291 incorrect guesses, after applying our
technique this improved to 79 found anomalies using only 80 incorrect guesses. This
means that on average, one in two suspected anomalies turned out to be correct!

Figure 4.6 shows two close-ups demonstrating the effect of the noise elimina-
tion technique. It shows the Matrix Profile having a somewhat consistent high value,
whereas the noise eliminated version only increases near the actual anomalies.

Our method was unable to find all anomalies for four of the datasets. Two of these
are shown in Figure 4.7. In dataset 53 the first two anomalies were not detected due to
their similarity with other flat series. In dataset 61 the algorithm behaves similarly to
the original matrix profile due to the sudden increase in the noise level and becomes
unable to differentiate anomalies from noise. In this case the first anomaly is found but
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Table 4.1: Results of anomaly detection using the Matrix Profile with and without noise elim-
ination on the Yahoo! Webscope anomaly dataset. For each dataset, we kept guessing until all
anomalies were found or 10 incorrect guesses were made. When using noise elimination we
were able to find most anomalies with few attempts.

Without Noise Eliminaton With Noise Elimination
Dataset # Anomalies Found Anomalies Wrong Guesses Found Anomalies Wrong Guesses
1 2 0 10 2 0
2 2 1 10 2 3
4 3 0 10 3 0
5 1 0 10 1 0
6 1 0 10 1 0
8 3 0 10 3 5
10 1 0 10 1 0
11 1 0 10 1 0
12 2 1 10 2 1
14 1 1 8 1 0
17 3 1 10 3 2
19 3 0 10 3 0
21 2 1 10 2 1
22 1 1 8 1 0
23 12 5 10 12 3
24 3 3 3 2 10
25 1 1 2 1 0
31 2 0 10 2 1
32 2 2 5 2 1
33 1 0 10 1 1
40 2 1 10 2 9
41 3 1 10 3 3
42 3 0 10 3 7
43 3 2 10 3 1
45 1 0 10 1 0
48 1 0 10 0 10
50 1 1 2 1 0
53 4 4 3 2 10
58 1 0 10 1 0
61 2 0 10 1 10
62 4* 0 10 4 1
63 1 0 10 1 0
66 6 5 10 6 1
67 5 5 0 5 0
Sum 84 36 291 79 80

* Dataset 62 actually contains five anomalies, but because the first anomaly occurs within the first three days which are used to estimate the
noise level, we do not consider it in the results.

the second one is missed.

4.6 Use Case: Semantic Segmentation for Time Series

Semantic segmentation of time series involves splitting a time series into regions where
each region displays homogeneous behavior, these regions typically correspond to a
particular state in the underlying source of the signal. Applications of segmentation
may include medical monitoring, computer-assisted data annotation or data analysis in
general. In this section, we perform semantic segmentation on the PAMAP2 activity
dataset using the Corrected Arc Curve (CAC). The CAC is calculated by the FLUSS
algorithm for batch data or the FLOSS algorithm for streaming data, using the Matrix
Profile index [3].



98
CHAPTER 4. IMPLICATIONS OF Z-NORMALIZATION IN THE MATRIX

PROFILE

0 200 400 600 800 1000 1200 1400

40

20

0

20

40

Dataset 53
Time series
Anomaly annotation
Matrix Profile
Noise Elim. Matr. Prof.

0 200 400 600 800 1000 1200 1400

500

0

500

Dataset 61
Time series
Anomaly annotation
Matrix Profile
Noise Elim. Matr. Prof.

Figure 4.7: Left: Dataset containing two anomalies which are not detected as they closely
resemble the estimated noise. The noise eliminated Matrix Profile is zero for this segment.
Right: Dataset where the original amount of noise is small but increases at one point, causing
the Noise Elimination to lose its effect.

The CAC was introduced as a domain agnostic technique to perform time series
segmentation on realistic datasets, with support for streaming data while requiring only
a single intuitive parameter (the subsequence length to consider). During evaluation
the CACwas found to perform better thanmost humans on dozens of datasets, allowing
the authors to claim “super-human performance” [3].

The CAC is a vector of the same length as the Matrix Profile, and is constructed by
analyzing theMatrix Profile Index. They consider arcs running from each subsequence
to the location of its nearest match. To calculate the CAC, they compare the number
of arcs running over each location against the number of arcs expected if all match
locations would be determined by uniform sampling over the entire series. This ratio
is defined as the CAC, its values are strictly positive without an upper bound, but can
be safely restricted to the range [0, 1]. Assuming homogeneous segments will display
similar behavior while heterogeneous segments will not, a low CAC value is seen as
evidence of a change point, though a high CAC value should not be seen as evidence
of the absence of one.

We use the PAMAP2 Activity Dataset [25], which contains sensor measurements
of 9 subjects performing a subset of 18 activities like sitting, standing, walking, and
ironing. Each subject was equipped with a heart rate monitor and 3 inertial measure-
ment units (IMU) placed on the chest, dominant wrist and dominant ankle. Each IMU
measured 3D acceleration data, 3D gyroscope data and 3D magnetometer data at 100
Hz. The time series are annotated with the activity being performed by the subject and
transition regions in between activities. The duration of each activity varies greatly,
but most activities last between 3 to 5 minutes.

The PAMAP2 dataset has already been used in the context of segmentation [12],
where the authors used the Matrix Profile to classify the activities in passive and active
activities. At one point they note that the motif pairs in the passive actions (such as
lying, sitting or standing) are less similar and therefore less useful for segmentation.
The underlying problem here is the inability to detect motifs in the passive activities,
because they mainly consist of flat, noisy signals. By using our method to compensate
for this effect, wewill be able to find the neededmotifs, resulting in better segmentation
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Figure 4.8: Three accelerometer channels of subject 6 from the PAMAP2 dataset. We see three
activities and one long transition period. No clear patterns are discernible and many flat and
noisy subsequences are present. Reproduced from our previous work [8].

results.
We applied time series segmentation on the passive activities present in the

PAMAP2 dataset, focusing on the “lying”, “sitting” and “standing” activities. We
picked these activities since their measurements display very few patterns in the data
and they are performed consecutively for all subjects, meaning we did not have to in-
troduce time-jumps in our experiments.

We considered subjects 1 to 8 of the dataset (subject 9 had no recordings of the
relevant activities) and tested both the transition from “lying” to “sitting” as well as the
transition from “sitting” to “standing”. For each subject, we used the 3 accelerometer
signals from the IMU placed on the chest of the subject, any missing data points were
filled in using linear interpolation. We calculated the CAC by self-joining each sensor
channel with and without noise elimination using a subsequence length of 1000 (10
seconds). The standard deviation of the noise was estimated (without optimizing) by
taking the 5th percentile of the standard deviations of all subsequences.

An example of the signals spanning over the 3 passive activities can be seen in
Figure 4.8. We emphasize it is not our goal to build the optimal segmentation tool for
this specific task, but to simply evaluate the effect of our noise elimination technique
on the CAC for sensor signals containing flat and noisy subsequences.

There is one unexpected side effect of the noise cancellation technique that needs
to be corrected before calculating the CAC. Because most of the flat subsequences will
have an exact match (distance equal to zero) to other flat subsequence, there will be
many locations to represent the best match. However, since the Matrix Profile Index
only stores one value, the selected best match will become determined by the first
or last match, depending on the implementation of the Matrix Profile. This creates
a pattern in the Matrix Profile Index, that actually violates the CAC’s assumption of
matches being spread out over a homogeneous region. Note that this effect is in fact
also present in the normal Matrix Profile, but typically has goes unnoticed because
multiple exact matches are extremely rare.

To prevent this effect, we need to randomly pick one of the best matches and store
its location in theMatrix Profile Index. This is straightforward when using the STOMP
algorithm [10], as every step in STOMP calculates all matches for one particular sub-
sequence. If we want to calculate the Matrix Profile in an online fashion using the
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SCRIMP algorithm [11], where the matches for one specific subsequence are spread
over many iterations, we need to utilize reservoir sampling [26] in the construction
of the Matrix Profile Index. Reservoir sampling allows uniform sampling without re-
placement from a stream without knowing the size of the stream in advance. We use it
to sample the stream of best matches. Implementing reservoir sampling requires us to
store an additional vector of the same length as the Matrix Profile, to keep track of the
number of exact matches that was encountered so far for each subsequence. Pseudo
code to update the Matrix Profile and its indices is listed in Algorithm 4.

Algorithm 4: SCRIMP Matrix Profile Update using Reservoir Sampling
Input: dists: distances on diagonal calculated by SCRIMP
Input: indices: corresponding indices of dists
Input: numMatches: number of exact matches per subsequence
Input: mp: part of Matrix Profile vector being updated
Input: mpi: part of Matrix Profile Index being updated
/* Handle new better matches */

1 better = dists < mp
2 mp[better] = dists[better]
3 mpi[better] = indices[better]
4 numMatches[better] = 1

/* Handle matches equal to current best match */
5 equal = dists == mp ∧ finite(dists)
6 numMatches[equal] = numMatches[equal] + 1
7 for i in equal do
8 if random() < 1/numMatches[i] then
9 mpi[i] = indices[i]

The code is straightforward. In lines 1 to 3we update theMatrix Profile and Index if
a better match was found and in line four we reset the tracked number of exact matches.
In line five, we gather any matches equally good as the match being tracked in the
Matrix Profile. Line six increases the counter of any equally good matches found and
line seven to nine perform the reservoir sampling to update the Matrix Profile Index
for each newly found equal match.

For both experiments, the CAC was calculated using the Matrix Profile with ran-
domly sampled indices. The activity-transition point was taken where the CAC was
minimal, ignoring any values in the first and last 50 seconds (5 times the subsequence
length), as suggested by the original paper [3]. We considered 4 segmentations per
subject: one CAC for each of the three sensor channels and one obtained by averaging
the individual CACs.

To evaluate the ability to predict the transition period, we define the score as the
normalized distance between the predicted transition and the ground truth transition.
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Note that some ground truth transitions are instantaneous, while others consist of a
transition period, as can be seen in Figure 4.8. We also added an additional buffer
period equal to the subsequence lengthm (10 seconds) before and after the transition
period that we still consider as correct to consider the detection interval of the Matrix
Profile. Pseudo code for our scoring function is listed in Algorithm 5, a score will
range from 0 to 100, where lower is better.

Algorithm 5: Scoring Function for Semantic Segmentation
Input: estimate: estimated transition
Input: trueStart, trueEnd: ground truth start and end of transition
Input: n: length of series (both activities and transition period)
Input: m: subsequence length / transition buffer
Output: score

1 if estimate < trueStart−m then
2 score = ((trueStart−m)− estimate)/n ∗ 100
3 else if estimate > trueEnd+m then
4 score = (estimate− (trueEnd+ b)/n ∗ 100
5 else
6 score = 0

Table 4.2: Scores for the segmentation of the transition from “lying” to “sitting” using the 3
chest accelerometers from the PAMAP2 dataset for subjects 1 through 8, with and without noise
elimination applied. Segmentation is performed using the CAC from a single sensor (C1, C2 and
C3) and using the average of the 3 CACs (combined). Similar or better performance are achieved
when applying noise elimination for all subjects except subject 1. Results are reproduced from
our previous work [8].

Without Noise Elimination With Noise Elimination
Subject C1 C2 C3 Combined C1 C2 C3 Combined

1 5.9 31.3 31.9 31.7 41.3 31.8 41.8 36.7
2 32.9 1.4 1.4 1.4 28.8 1.4 1.7 1.4
3 35.9 2.8 31.1 33.8 2.4 2.3 2.3 2.3
4 0.0 2.8 5.9 0.0 0.0 1.5 6.6 0.8
5 1.1 7.6 5.1 3.9 1.6 1.7 4.9 1.6
6 2.5 1.9 2.3 2.3 2.4 1.9 2.0 2.4
7 0.1 1.8 11.1 2.0 2.1 1.8 1.9 1.9
8 0.0 1.4 5.5 1.7 0.0 1.4 1.4 1.4

Average 9.32 9.61 7.71 6.07
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Table 4.3: Scores for the segmentation of the transition from “sitting” to “standing” using the
3 chest accelerometers from the PAMAP2 dataset for subjects 1 through 8, with and without
noise elimination applied. Segmentation is performed using the CAC from a single sensor (C1,
C2 and C3) and using the average of the 3 CACs (combined). Overall, we see similar or better
performancewhen applying noise elimination, except for the segmentation using the first channel
for subject 1, 3 and 8. Results are reproduced from our previous work [8].

Without Noise Elimination With Noise Elimination
Subject C1 C2 C3 Combined C1 C2 C3 Combined

1 32.5 0.0 3.6 2.2 38.7 0.0 3.7 2.2
2 36.5 37.2 36.4 37.0 7.1 30.0 32.7 29.2
3 10.0 30.2 43.1 30.2 43.2 14.0 43.7 43.2
4 7.8 1.9 1.1 1.2 0.7 2.0 1.3 1.3
5 13.1 0.0 28.5 10.6 13.3 1.0 1.2 1.0
6 36.1 36.6 26.9 36.6 23.3 3.4 26.5 3.2
7 43.1 38.0 16.5 16.5 43.4 1.6 0.0 1.6
8 2.3 1.0 24.8 1.0 21.1 0.0 16.5 1.0

Average 21.12 16.9 15.35 10.3

Table 4.2 lists the results for the segmentation when transitioning from “lying” to
“sitting”. For all subjects expect subject one, the results show similar improved scores
for segmentation using individual sensors as well as the combined approach when us-
ing the noise elimination technique. The average score for the individual sensors im-
proves from 9.32 to 7.71, a modest improvement corresponding to a gain of about 8
seconds. The segmentation based on the combined CACs improves from 9.61 to 6.07,
a gain of about 18.5 seconds. Note that most scores without noise elimination were
already very good, leaving little room for improvement. The bad results for subject
one can be explained by an incorrect early estimate which is caused by movement of
the subject near the start of the “lying” activity. Note that subject one has bad scores
for both techniques.

Table 4.3 lists the results for the transition from “sitting” to “standing”. Like the
previous experiment, we see similar or improved results when applying noise elimi-
nation, except for subjects one, three and eight using the first sensor series and for the
combined approach for subject three. While the overall scores are worse, the gain by
enabling noise elimination is more significant. The average result for a single sensor
improves from 21.12 to 15.35, corresponding to a gain of about 27 seconds. When
using the combined approach the average score improves from 16.9 to 10.3, a gain of
around 31 seconds.

Though limited in scope, these result indicate that the noise elimination technique
improves the ability of the CAC to detect transitions in a series containing flat and
noisy subsequences.
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4.7 Use Case: Data Visualization

Data visualization is a great tool for exploring newly acquired data or for finding sim-
ilar data in a larger data collection. Unfortunately, time series data for realistic use
cases is typically very lengthy, making trivial visualizations useless as these will fail
to simultaneously capture the overall and minute details of a series. More advanced
techniques summarize the series in a way that is still useful to gain insight into the
data. The visualization technique used in this section is the Contextual Matrix Profile
(CMP), recently introduced by the authors [14].

The CMP is a generalization of the Matrix Profile that tracks the best match be-
tween predefined ranges whereas the Matrix Profile tracks the best match for every
possible sliding window location. The distinction between the two can also be made
in terms of the implicit distance matrix, defined by the pairwise distance between all
subsequences of two series. Where the Matrix Profile equals the column-wise mini-
mum of the distance matrix, the CMP consists of the minimum over rectangular areas
of the distance matrix.

For this use case, we use the Chest-Mounted Accelerometer Dataset [27], an
activity recognition dataset publicly available at the UCI repository1. The dataset con-
tains data of 15 subjects performing seven different activities, measured using a chest-
mounted accelerometer sampling at 52Hz. The data is labeled with the corresponding
activity, though visual inspection reveals the labels seemmisaligned for some subjects.
The activities performed are: Working at a computer; standing up, walking, going up-
/down stairs; standing; walking; going up/down stairs; walking while talking; talking
while standing. We selected this dataset for this use case as it contains both activi-
ties with a periodic nature as well as passive activities where the accelerometer signal
consists of mainly noise.

For the remainder of this section, we focus on the first subject of the dataset due
to space constraints, though similar results were obtained for all subjects. This series
comprises 52 minutes of data containing nine regions of activity, it is visualized in
Figure 4.9. In the top of the figure we see the complete dataset with annotations indi-
cating the activity regions. At the bottom of the figure, close-ups of the signal for four
different activities are displayed. While the “working at computer” consists mainly of
a flat signal, a periodic pattern is visible in the channels of the other activities, with
the “walking” activity having the clearest pattern. Note that the three data channels
are uncalibrated, which is not an issue since the z-normalization focuses on the shape
of subsequences rather than the absolute values.

The CMP for each data channel is calculated by self-joining the data, using a sub-
sequence length of 52 (1 sec) and specifying contexts of length 469 at 520 (10 secs)
intervals. The context length is chosen so that matches can never overlap. Calculating
the CMP comes down to dividing the series in non-overlapping, contiguous 10 sec win-

1 https://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single+Chest-
Mounted+Accelerometer
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Figure 4.9: Top: Uncalibrated accelerometer data (3 channels) for subject 1, sampled at 52Hz,
for a total of 52 mins. The annotations A1 to A7 indicate the corresponding activity labels. The
activities performed are computer work, standing up/walking/stairs, standing, walking, standing,
stairs, standing, walking while talking, and talking while standing. Bottom: four extracts of 4
different activities, each 5 secs long.

dows and finding the best one second match for each pair of windows. The resulting
CMP is a 312 by 312 matrix, each value representing the distance of the best match of
the intervals defined by the row and column. The resulting CMPs for each data chan-
nel can be seen in Figure 4.10 (left). To demonstrate the value of the visualization, we
also added grayscale band to the CMP outline that corresponds to the activity labels
present in the data.

To interpret a CMP visualization, one should consider both axes represent the flow
of time, starting at the origin. Each value in the CMP indicates how well one region
of time matched another region, low (dark) values represent good matches while high
(light) values represent bad matches. Looking at Figure 4.10 (left), we can observe
a number of things. Most obvious is the symmetry of each CMP, this is because we
performed a self-join. We also see the dark square centered at index 100 in all three
channels, this indicates a period containing a repetitive pattern across all channels.
This region corresponds to the “walking” activity in the dataset, as can be seen by ref-
erencing Figure 4.9. Next, for channel two we see similar dark regions for the “stairs”
and “walking while talking” activities, meaning there is a similarity between all three
activities based on channel two. Though these activities also appear in channel one and
three, they are less visually noticeable, especially the “stairs” activity in channel one
could be easily missed. The same can be said for the very short “standing up/walking/s-
tairs” activity that precedes the walking activity. One final observation is the presence
of high value bands occurring across all channels to some degree between indices 0
and 60 and between 200 and 250. While the first band corresponds to the “computer
work” activity, there is no clear-cut corresponding activity for the second band. Most
likely, these artefacts are caused by regions with very flat signals, where the noise has
a large effect on the distance calculation.

Next, we calculated the CMPswhile using the noise elimination technique, keeping
all other parameters equal. We estimated the noise parameter for each channel by
sliding a one second window over the entire series, calculating the standard deviation
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Computer work

Standing/walking/stairs
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Figure 4.10: CMPs produced for each channel of the dataset using z-normalized Euclidean
distance without (left) andwith (right) compensating for the noise. The left and bottom grayscale
bar for each CMP corresponds to the different activity labels for each of the time windows. We
see how the noise elimination results in large areas of exact matches for the passive activities,
because of this, the different transitions between active and passive activities is clearly visible.
In case the activity labels were unknown, the CMP would have given a good indication of the
different regimes present in the signal.
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for each location and taking the value corresponding to the fifth percentile, similar as
we did in Section 4.6. For reference, these values were: 2.6, 2.3 and 2.7 respectively.
The resulting CMPs are visualized in Figure 4.9 (right).

We see the CMPs generated using noise elimination now have additional large,
rectangular regions with low values. As can be seen from the activity markings, these
regions correspond to the passive activities (computer work, standing and talking while
standing), where the series is flat and lacks distinctive patterns. Looking in detail, we
see how the activity markings almost perfectly line up with the transitions in the CMP,
which is major difference with the CMPs without noise elimination. We do see some
line artefacts in the final activity of the dataset for all channels, near index 190 and
280, which correspond to increases in the signal on all three channels. The questions
whether or not there is an activity change occurring there is in a way debatable and may
simply be a question of tweaking the noise parameter or refining the activity labels.

Of course, the CMP visualization can provide more insights than simply the differ-
ence between passive and active activities. It can also be used to differentiate between
different activities, provided these activities have different underlying patterns. As an
example, we can see that for the CMP of the first channel, the activities “walking” and
“walking while talking” have better matches than “walking” and “stairs”. This is not
the case for channels two and three. When looking at the closeup data of Figure 4.9,
we can in fact see a more distinct pattern for channel one for the “stairs” activity. We
do not quantify the ability to discern various activities as it is not in scope of this
work, our goal was simply to demonstrate the added benefit of noise elimination when
visualizing data with the CMP.

To conclude, we demonstrated the effect of the noise elimination technique for
data visualization using the CMP on accelerometer data for an activity dataset. Flat
signals, such as those from recording passive activities, will result in high values in
the CMP and might make it difficult to see the patterns of the underlying data. If we
apply the noise elimination technique while calculating the CMP, the passive activities
become easily discernible as regions of low values, giving the user better insight in
the underlying structure of the data and allowing the user to focus more on the more
salient parts. Importantly, the regions with active activities are unaffected by the noise
elimination, meaning we can apply noise elimination without risk.

4.8 Conclusion

In this chapter we explained the unintuitive behavior of the z-normalized Euclidean
distance when comparing sequences that are flat and noisy, and demonstrated how this
negatively affects the Matrix Profile and techniques using the Matrix Profile as build-
ing block. We discussed several properties of the z-normalized Euclidean distance,
including an estimation of the effect of noise, which we use to eliminate this effect
altogether.
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We applied our noise elimination technique on three different use cases involving
real-world data from open data sets. For anomaly detection on the Yahoo! Webscope
anomaly dataset, we were able to automatically guess twice as many anomalies while
utilizing less than one third of attempts when using our technique. When used for
semantic time series segmentation, we showed an improved accuracy for detecting
the transition between two passive activities. Finally, in our visualization use case,
we showed a major change in the visualization of activity data using the Contextual
Matrix Profile, allowing us to separate the underlying activities that were previously
indistinguishable.

Since our technique is conceptually simple, users should be able to reason whether
or not their use case will benefit from our technique. Our technique is straightforward
to implement and incurs only a constant factor overhead, so it can be used by everyone
using Matrix Profile related techniques working with data containing flat and noisy
subsequences.

Future remains on more robust noise estimations and dealing with series where
noise characteristics change over time.
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Chapter 5

Mining Recurring Patterns in
Real-Valued Time Series using the
Radius Profile

Motifs are those subsequences that are most similar to other subsequences in a time
series. They can reveal insights into the data or serve as prerequisite for more advanced
analytics. Motifs are most often defined in the context of a single best match, but we
can also define them in the context of multiple matches. One recent work introduced
Ostinato, a method for finding the top-k consensus motifs, i.e. the best preserved sub-
sequences that are repeated in a collection of series. This chapter further refines con-
sensus motif discovery by introducing the Radius Profile. Similar to the matrix profile,
the Radius Profile is a derived time series that can be used to extract consensus motifs
but can be directly used for analytics. By exploiting the anytime techniques available
to the matrix profile, we can obtain a representative Radius Profile in a fraction of
the time needed for Ostinato to find a single consensus motif. Additionally, we tackle
the even harder question of how to find repeated sequences in a collection of series,
irrespective of the position of their occurrence. In analogy to the consensus motifs,
we name these repeating patterns “common motifs” and define the common-k Radius
Profile, which can be used as a new insightful primitive, or to locate these common
motifs.

My contributions can be summarized as follows:

1. Introducing the Radius Profile as a new time series primitive that can be used to
find consensus motifs. Our method for calculating it can be used as an anytime
algorithm and supports variants such as the k-of-n variant that considers only a
subset of the series.

2. Introducing the common-k Radius Profile as a new series primitive that can be
used to find common motifs.
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Mining Recurring Patterns in Real-Valued Time Series using the
Radius Profile

D. De Paepe and S. Van Hoecke

This chapter is an extended version of the paper published in “Proceedings of the 20th
International Conference on Data Mining (ICDM)”

Abstract Time series analysis is becoming more popular in both research and indus-
try. One recent innovation is the Ostinato algorithm, which finds the best preserved
patterns that are repeated in a collection of series, i.e. consensus motifs and corre-
sponding radii. However, Ostinato only works as a batch algorithm, can only find the
top-k patterns and only finds patterns that are repeated in multiple series. Furthermore,
the runtime of Ostinato can vary widely depending on the input series and setup pa-
rameters. To tackle these limitations, we present two algorithms in this chapter that
can answer broader questions. First, we created an anytime version of Ostinato, called
Anytime Ostinato, that finds the exact consensus radius for each subsequence, i.e. the
radius profile, or can estimate these radii in a fraction of the time. Second, we de-
signed a batch algorithm, called Single Series Ostinato, that finds the radius profile for
a single series allowing us to detect repeating patterns in a single series, which is not
possible for Ostinato. In this chapter we explain both algorithms and apply them to
the REFIT and PAMAP2 datasets respectively. The Anytime Ostinato algorithm gives
an estimated but representative radius profile in less time than it takes for Ostinato to
find the top-1 consensus motif and radius. The radius profile found by the Single Se-
ries Ostinato algorithm clearly marks regions with repeating patterns and allows us to
extract representative subsequences. We believe the radius profile can also be useful
beyond finding repetitions and act as a building block, similar as to how the Matrix
Profile captures motif information but has since been used in many other techniques.

5.1 Introduction

With the rise of IoT and continuous monitoring, time series data is becoming more
and more prevalent in various domains, and proper analysis of this data can lead to
valuable monetary or societal advantages. For example, manufacturers can monitor
machine behavior to find outliers in their products or production performance, traffic
analysis might lead to better city planning, or medical studies might benefit from activ-
ity recognition using non-intrusive sensors. In the relatively new time series analysis
domain, several topics are being researched today. These include broad topics like
classification or anomaly detection, but also specialized techniques such as discord or
motif discovery, that can act as building blocks for other techniques.

Whereas many publications deal with finding the best matching subsequence (mo-
tif discovery) in time series, only one (recent) publication tackles finding the most
similar subsequence in a collection of series, the so called consensus motif. Consen-
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sus motifs can be directly used to find repeating patterns (e.g., daily occurrences), to
extract atomic patterns from a signal stream (e.g., isolating letters from eye tracking
movement signals [1]), and may have applications for time series classification using
shapelets [2].

Given a collection of series and a subsequence length, the Ostinato [1] algorithm
finds the subsequence s and corresponding minimal distance r (the radius), so that for
each series the distance from s to the best matching subsequence of that series is r or
less. Since we can consider a single, partitioned series as a collection of individual
series, Ostinato is also applicable to partitioned series. Furthermore, a straightforward
adjustment to Ostinato allows us to find the top-k consensus motifs instead of only the
top-1.

However, the Ostinato algorithm has two important restrictions. First of all, it as-
sumes a good match is to be found in every series. If this is not the case, the algorithm
will take a substantial longer time and may produce unintuitive results. A variant that
drops this assumption exists but requires insight in the data and a longer runtime. Sec-
ond, Ostinato assumes we only care about the single best match in every series. This
means that multiple occurrences of a pattern within a single series are disregarded. As
a result, we cannot use Ostinato to find the most common pattern in a (collection of)
series where we do not know in advance where the pattern occurs.

To solve these shortcomings we present two innovations. First, we present an any-
time version of the Ostinato algorithm that finds the consensus radius for all subse-
quences, i.e. the radius profile, rather than the top-k consensus motifs and corre-
sponding radii. Here, the runtime is independent of the presence of good matches.
Furthermore, due to the anytime property, we can shorten the runtime to obtain ap-
proximated results. We show that we get representative results for all subsequences
in less time than it takes Ostinato to find the top-1 result and that in some cases the
complete, exact calculation is faster than the top-1 Ostinato calculation. Secondly, we
present an algorithm that finds the radius profile for a single series, allowing us to find
repetitions in a single, non-partitioned series or in multiple series while ignoring where
these repetitions occur.

The remainder of this chapter is structured as follows. Section 5.2 introduces nota-
tion and definitions. Related work on finding repeated patterns is presented in Section
5.3. Section 5.4 covers the inner workings and runtime insights of the Ostinato algo-
rithm and introduces a visual representation which we will reuse in further sections. In
Section 5.5, we introduce our Anytime Ostinato algorithm to find the radius profile for
all subsequences, and demonstrate its performance using the REFIT power consump-
tion dataset [3]. In Section 5.6, a second algorithm is introduced, i.e. Single Series
Ostinato, which calculates the radius profile for a single series. Results of this algo-
rithm are demonstrated on the PAMAP2 activity dataset [4]. We conclude the chapter
in Section 5.7.

The source code for our algorithms and the experiments listed in this chapter have
been made available online, so others can verify or extend our work [5].
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5.2 Notation & Definitions

We start by defining the common concepts of series and subsequences.

Definition 5.1 (Series) A series S ∈ Rn is an ordered collection of n real values
(s1, s2 . . . sn).

Definition 5.2 (Subsequence) A subsequence Si,m is the continuous subsequence of
S starting at index i of lengthm: (si, si+1 . . . si+m−1). It has to fall completely within
S: (1 ≤ i ≤ n−m+ 1).

In the context of pattern matching, the distance between two subsequences is often
defined as the z-normalized Euclidean distance. Other measures such as Euclidean
distance or cosine distance can be chosen as well, as long as a lower distance value
indicates a better match.

Definition 5.3 (Z-normalized Euclidean distance) The z-normalized Euclidean
distance D(A,B) between 2 series of equal length A ∈ Rm and B ∈ Rm is defined
as follows, where µ and σ represent the mean and standard deviation respectively:

D(A,B) =

√(
a1 − µA
σA

− b1 − µB
σB

)2
+ . . .+

(
am − µA
σA

− bm − µB
σB

)2

Definition 5.4 (Radius) The radius r of a subsequence Q ∈ Rm with respect to a
collection of series Σ = (S1, . . . , Sk), is the maximum of the distances between Q
and the best matching subsequence from each series. In other words, it is the minimal
distance needed to reach at least one subsequence in each series, starting from Q.

min
r
∀S ∈ Σ,∃i : D(Q,Si,m) ≤ r

Definition 5.5 (Consensus motif) Given a collection of series (S1, . . . , Sk), the con-
sensus motif of a given length m is the subsequence Sji,m taken from one of those
series, such that the radius is minimal.

5.3 Related Work

A substantial amount of research exists on finding repeating patterns in symbolic se-
ries, mainly driven by the temporal rule mining community. Just as frequent pattern
mining is commonly used in rule mining, frequent episode mining is used in tempo-
ral rule mining, where an episode consists of an ordered list of event types. Han et
al. made an extensive survey on temporal mining related techniques [6]. Similarly,
in the biomedical domain, common patterns in DNA are called consensus motifs and
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various techniques focus on discovering these [7]. Other techniques originate from
the music domain, where repeating patterns can be used for audio segmentation, beat
detection or summarising music. For example, Hsu et al. present a technique, where
they use a correlative matrix to find non-trivial repetitions in music, representing notes
as symbols [8]. However, methods for symbolic series are not directly applicable to
real-valued time series.

To the best of our knowledge, little to no work can be found regarding repeating
patterns in real-valued series. Motif discovery techniques, such as Matrix Profile [9],
aim to find the best matching subsequence pair rather than the most common one.
However, the best match is not guaranteed to also be part of the most common pattern-
group. An adaptation of the Matrix Profile technique has been used to find time series
chains, which are repeating patterns that slowly change throughout time [10]. Again,
there is no guarantee that these chains will overlap with the best repeating pattern,
because time series chains assume each pattern is most similar to the immediately pre-
ceding and later occurrence. Another variation is the Time Series Snippets algorithm
[11], which looks for representative subsequences to summarize a series. However,
this algorithm only considers a subset of all subsequences and will evaluate similarity
against the entire dataset, making it unsuited for cases where we want to find well-
preserved patterns with few repetitions. From the music domain, REPET is a Fourier
based technique to separate foreground audio from repeating background music [12].
The technique assumes the pattern is repeated continuously, as is often the case in
background music, making it unsuited to find patterns that are spread throughout a se-
ries. To conclude, it seems only the Ostinato algorithm, described in the recent work
by Kamgar et al. deals with finding repeated patterns in multiple real-valued series
[1].

5.4 The Ostinato Algorithm

In this section, we provide an overview on how Ostinato works and highlight some of
its properties. However, we first introduce the distance matrix as a visual aid for this
and later sections.

Given a number of time series S1, . . . , Sn and a subsequence length m, we can
represent the pairwise distance of all subsequences as a distance matrix D, as shown
in Figure 5.1. Here, both axes represent all possible subsequences. That is, element
D[i, j] contains the (z-normalized Euclidean [9]) distance between the i-th and j-th
subsequence. Note that we display the series along both axes for visual clarity, but in
reality the axes are shorter than the series as there are only l−m+ 1 subsequences in
a series of length l.

Figure 5.1 also shows the relation between the distance matrix and a consensus
motif. For any subsequence c, we can calculate the distance between c and the best
matching subsequence of all series (i.e. d1, d2, d3 and d4 in Figure 5.1). Themaximum
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Figure 5.1: Distance matrix for four series S1, . . . , S4. Each row i and column j represents
a single subsequence of one series and the element at index [i, j] corresponds to the distance
between those subsequences. As a side effect of this, the main diagonal (dashed blue) consists
of all zeros. The consensus radius of a specific subsequence c is calculated by finding the best
matching subsequence for all series and taking the maximum of these distances (d1, . . . , d4).
The top-k consensus motifs are the k subsequences with the minimum radius.

value of these distances is defined as the radius r. The top-k consensus motifs are the
k subsequences for which the radius is minimal.

Ostinato finds the top-1 consensus motif and corresponding radius using a straight-
forward greedy branch and bound approach, as visualized in Figure 5.2. For series S1,
it calculates all subsequence distances between S1 and S2, tracking the best distance
for each subsequence of S1 (see Figure 5.2, step 1). Next, the subsequence with the
lowest distance is considered the candidate consensus motif and its radius is calculated
by determining the distance with all other series (step 2). At this point, Ostinato has
an upper bound and repeats the process for all other subsequences of S1, aborting the
search if at any time the upper bound is passed (step 3). After all subsequences of S1
have been considered, the search is repeated for the next series (steps 4 and further).
Pseudocode is listed in Algorithm 6 and is a composition of the original pseudocode
and the accompanying reference implementation [1].

Due to the branch and bound approach, the runtime of Ostinato is dependent on
details of the time series. In a very bad case, Ostinato has to calculate a large portion
of the distance matrix (excluding the self-join of each series). In the very best case, it
has to calculate n full-series calculations (i.e. steps 1, 4, 6 and 8 in Figure 5.2) and one
single column (step 2). In more realistic cases, the number of columns calculated will
depend on the relation between the found upper bound and any distances that remain
to be calculated. As an unfortunate side effect of this, the performance of Ostinato
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Figure 5.2: Visualization of the distance calculations made in different steps by the Ostinato
algorithm. For each series, a full pairwise distance calculation is performed to the next series
(steps 1, 4, 6 and 8), after which distances to all remaining series are calculated (steps 2, 3, 5, 7
and 9). By using a best-so-far threshold found in step 2 and possibly updated in later steps, many
of the distance calculations can be skipped (remaining white area in the distance matrix). Note
that there is no need to calculate the distances in D11, . . . , D44, as the best matching distance
is known to be zero.

degrades when a specific pattern is repeated in all series but one, for example due to a
labeling error. Not only will this cause a poor result, but the calculation will also take
longer to finish due to the higher upper bound.

We demonstrate this is in Figure 5.3, where we compare the timings of four differ-
ent collections of time series. The first collection consists of 10 identical series, and
represents the optimal case for Ostinato. The second collection consists of 10 series of
random noise, where we expect a large upper bound due to the lack of patterns. The
third collection represents real-world data and was extracted from the REFIT power
consumption dataset (aggregate readings from the first house) [3], with each series
corresponding to a different time range. As shown later on, this dataset contains mul-
tiple repeating patterns. The final collection was the same as the third, but with one
series replaced by randomly sampled noise, as to mimic an incorrectly labeled time
series. The length of each series was chosen as a multiple of two, and the subsequence
length was 1024, as was used in the benchmarks of the original paper [1].

As expected, the timings in Figure 5.3 show a similar trend, but vary greatly be-
tween the different types of time series. It is somewhat surprising how the longest
runtime does not belong to the random dataset, but rather to the realistic dataset where
one series was replaced with noise. In this case, the runtime is about 16 times longer
than the optimal case. We suspect this is due to the large number of good matches, all
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Algorithm 6: Ostinato algorithm for finding the top-1 consensus motif
Input: series: an array of n series
Input: m: subsequence length
Output: tsIndex: series index of consensus motif
Output: ssIndex: subsequence index of consensus motif
Output: radius: radius of consensus motif

1 tsIndex, ssIndex, radius = (−1,−1,+∞)
2 for s in [0 . . . n-1] do
3 sNext = (s+ 1) mod n
4 MP = MatrixProfile(series[s], series[sNext])
5 candidateSsIdxs = argsort(MP )
6 for j in candidateSsIdxs do
7 candRadius = MP [j]
8 if candRadius ≥ radius then
9 break loop

10 otherSeries = [sNext . . . n[∪[0 . . . s[
11 for sOther in otherSeries do
12 distances = dist(series[s][j : j +m], series[sOther])
13 candRadius = max(candRadius,min(distances))
14 if candRadius ≥ radius then
15 break loop

16 if candRadius < radius then
17 tsIndex, ssIndex, radius = (s, j, candRadius)

of whose distances will be obtained through column-calculations, only to end up with
a poor match in the random series, whereas the pure random data will have few good
matches overall.

Each of the n full-joins are calculated in O(l2) using the STOMP [13] algorithm,
and each column is calculated using the MASS algorithm in O(l log l) [14], with n
representing the number of series and l the average series length. Overall, we can say
the memory complexity is O(l) and the time complexity is O(n2l2 log l). Note that
the subsequence lengthm does not affect the runtime.

Two variants of Ostinato are mentioned in the original paper [1]. The first variant
lets Ostinato find the top-k consensus motifs by tracking the k best results instead of
the single best one. Overall, this will result in a higher upper bound and more column-
wise calculations in the distance matrix. The second variant can be used to find the
top-1 k of n consensus motif, namely the best consensus motif that can be found in a
subset of k series. To do this, a full join is calculated and best matches are tracked for
each series to n− k + 1 other series, rather than one.
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Figure 5.3: Timings for Ostinato on four different types of time series data for subsequence
length 1024. Each time, the input consisted of 10 series of the same length. We see that the type
of data has a major influence on the runtime, due to the branch-and-bound approach.

As we have shown, Ostinato is an exact and fast algorithm for finding the top-1
(or top-k) consensus motifs. However, there are still some limitations. While it could
return intermediate solutions, Ostinato remains a batch algorithm [1], which might
be unsuited for applications with strict time constraints. Secondly, the upper bound
calculation differs for the top-k and k of n variants, meaning that the user needs to
have an idea of what he is looking for before starting a calculation. In the next section,
we present an anytime version of Ostinato to calculate not only the top-k motifs, but
all consensus motifs, including all k of n variants, in a single run.

5.5 Finding All Consensus Motif Radii

Finding all consensus motifs rather than the top-k might give further insights into the
properties of the series. This is similar as to how the Matrix Profile [9] was originally
introduced as a way to find all motifs rather than only the top motif, but has since
seen numerous other applications including series segmentation, visualization or rule
mining. In a way, it does not make sense to talk about finding all consensus motifs,
since every subsequence is one. Instead, in this section we will discuss how to find the
corresponding radius for each subsequence, i.e. the radius profile.

Looking back at Figure 5.1, we could simply calculate the full distance matrix
(excluding the diagonal blocks), and calculate the radius for each subsequence one
after the other. This approach works and closely resembles the STAMP variant of
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Figure 5.4: Visual representation of the distance calculation for theAnytimeOstinato algorithm.
Diagonals are calculated for each pair of series in the upper triangle of the distance matrix (red
solid lines), and the distances are reused in the lower triangle (blue dotted lines). Whenever a
diagonal is calculated for a pair of series (e.g. D13), the two corresponding matrix profiles are
updated (e.g. MP13 andMP31). Note that we do not visualize all tracked matrix profiles.

Ostinato used by Kamgar et al. [1] for benchmarking, but is considerably slower than
Ostinato. However, there is a better way to approach this problem.

5.5.1 Algorithm

Our solution consists of three parts. First, we can exploit the fact that the distance
matrix is symmetric, i.e. the distance at index [i, j] is the same as the distance at
index [j, i]. This allows us to avoid half of all distance calculations. Secondly, for
each subsequence, we track the distance to the best matching subsequence of the other
series, i.e. the Matrix Profile for each pair of series. Finally, instead of calculating the
distances column-wise (using STAMP or STOMP), we calculate diagonals using the
SCRIMP [15] algorithm. A visual representation of our approach is shown in Figure
5.4.

By calculating diagonals, we effectively obtain an anytime calculation for the con-
sensus radius of each subsequence. And, as we will demonstrate below, the anytime
estimate on a small subset of the data still gives a representative radius estimate for
each subsequence, from which we can also distill the top-k motifs.

Storing the matrix profile for each pair of series (excluding self-joins) provides
all information to know the radius of each subsequence for both the top-k consensus
motifs as well as the k of n variant. Furthermore, it allows us to resume refining the
matrix profiles after looking at intermediate results, which could prove useful for data
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exploration purposes. One downside of this approach is the O(n2l) memory usage,
though this can be reduced toO(nl) if the resumability property is dropped and we do
not need the k of n variant, by processing the distance matrix in series-based batches.

As our algorithm is stateful, it consists of an initialization, a calculation, and a
result extraction step.

The initialization step is listed in Algorithm 7. We iterate over all pairs of series
from the upper triangle of the distance matrix (lines 3 and 4), create a stateful class
to calculate both matrix profiles (line 5) and finally store the calculator and output
variables (lines 6 till 8). At this point, all matrix profiles contain only infinite distances.

The calculation step is straightforward as shown in Algorithm 8: for each of the
SCRIMP calculators (for which we refer to the SCRIMP paper [15]), we calculate di-
agonals until the desired fraction of all distances has been processed. For each diagonal
calculated, the distances are used to update both corresponding matrix profiles.

At any point we can get the all-subsequence consensus radius using Algorithm
9 or the all-subsequence k of n consensus radius using Algorithm 10. The former
collects the maximum distance of each subsequence, the latter first sorts all distances
per subsequence and extracts the k − 1 lowest distance.

Algorithm 7: Initialization of the Anytime Ostinato algorithm
Input: series: an array of n series
Input: m: subsequence length

1 mpCalculators = []
2 mps = array of n empty arrays
3 for s1 in [0 . . . n-1] do
4 for s2 in [s1 + 1 . . . n-1] do

/* SCRIMP based matrix profile calculator */
5 c = Calculator(series[s1], series[s2],m)
6 mpCalculators.append(c)

/* Distances of s1 to s2 */
7 mps[s1].append(c.mp1)

/* Distances of s2 to s1 */
8 mps[s2].append(c.mp2)

Algorithm 8: Calculation step of the Anytime Ostinato algorithm
Input: fraction: fraction of distances to calculate [0 . . . 1]

1 for c in mpCalculators do
2 c.updateMPs(fraction)
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Algorithm 9: Radius calculation for all subsequences in the Anytime Osti-
nato algorithm
Input: seriesIndex: index of series for which to collect radii
Output: radii: radius for each subsequence of the series

1 radii = array of |mps[seriesIndex]| zeros
2 for mp in mps[seriesIndex] do
3 radii = max(radii,mp)

Algorithm 10: K of n radius calculation for all subsequences in the Anytime
Ostinato algorithm
Input: seriesIndex: index of series for which to collect radii
Input: k: number of series to use for radius, [2, n[
Output: radii: radius for each subsequence of the series
/* Creates 2D array of shape (n-1, numSubseq) */

1 dists = concat(mps[seriesIndex])
2 sort(dists, alongAxis = 0)
3 radii = dists[k − 1, :]

5.5.2 Results on the REFIT Dataset

To demonstrate our technique, we use the REFIT dataset [3], which was also used in
the original Ostinato paper. We extracted seven time series of the aggregated power
consumption of the first house, each a day long (about 12843 data points), from the
first week of December 2014. Using Ostinato, we calculated the top-1 consensus motif
using a subsequence length of 800 (one and a half hours), which took 94 seconds. Next,
we calculated the radius for all subsequences using our Anytime Ostinato algorithm
for 5, 10, 25, 50 and 100 percent of the data. This took respectively 20, 36, 86, 170
and 328 seconds.

The results are shown in Figure 5.5. At the top, the radius profile for a single
day is shown. For visual clarity, we have normalized the distances to a range of zero to
one [16] and only show results for the smallest (five percent) and complete calculation.
Even though the complete calculation used twenty times as many distance calculations,
we see that the results are very similar. At the middle and bottom of Figure 5.5, we see
the top-5 consensus motifs for both calculations. Again, we can see that all resulting
consensus motifs are very similar. In fact, the top-1 motif found using five percent of
all calculations is simply a shifted version of the true top-1 motif. This means that we
were able to obtain a representative estimate of the radii for all subsequences in less
than a fourth of the time it took to obtain the assured top-1 motif using Ostinato.

Similarly we see how the top-2, top-3 and top-5 consensus motif calculated on 5%
of the data closely resemble the true top-2, top-3 and top-4 motifs. In all cases, a better
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Figure 5.5: Top: Radius profile for the fourth day (which contains the top-1 motif), using either
five percent or using all distance calculations. We see that even when calculating only a small
fraction, the profile matches very well with the exact profile. Middle & bottom: the top-5 con-
sensus motifs found in the fourth day of data. Each motif corresponds to a local minimum in
the radius profile. The top-1 100% motif shown is the true top-1 motif over all considered data.
Even using only five percent of all calculations, we found a slightly shifted pattern of this motif.
Note that the listed radii for the top-5 5% motifs are upper bounds of the true radius for each
pattern.

radius was found by examining the remaining 95% the data. The top-4 5% motif is no
longer in the true top-5. Note that none of the 5% motifs are not wrong in the way
that they never overestimate the radius. Instead, as more data is processed the radii for
those patterns could still decrease or other patterns could be found to change the top-k
listing.

Next, let us look deeper at the runtime of our Anytime Ostinato technique. In
Figure 5.6, we show the timings for various percentages of calculated distances, and
overlay these with the Ostinato timings. Note that unlike Ostinato, the runtime for
our algorithm is not affected by the type of data since we do not use a branch and
bound method. As we can see, our 100% calculation is still faster than the worst result
for Ostinato. For the most representative timing, we should look at the non-modified
results for the REFIT dataset. In this case, we can calculate between 10 and 25 percent
to get a similar runtime as Ostinato. However, our anytime algorithm returns a result
for all subsequences, while Ostinato only finds the top-1 consensus motif.

5.6 Finding the Most Common Patterns

Both Ostinato and our improved anytime version are meant to find the patterns that
are best conserved over multiple series, i.e. consensus motifs. Similarly, the Matrix
Profile can be used to find the best preserved pattern within a single series, i.e. motifs.
However, neither technique can be efficiently used to find the top-k best conserved
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Figure 5.6: Timings for Anytime Ostinato for various calculation percentages, overlayed with
the Ostinato results from Figure 5.3. Note that the anytime algorithm is not affected by the type
of data. Again, each run was done with 10 series of the same length and subsequence length of
1024. We see how the optimal case of Ostinato takes equally long as an anytime run with 10%,
how the normal REFIT data takes about equally long as a 25% run, and how a complete 100%
run is still twice as fast as the worst case runtime of Ostinato.

patterns occurring multiple times in a single series. We could call these the intra-
series consensus motifs, but to avoid confusion with the multi-series consensus motif,
we opt to call these patterns common motifs instead.

At this point, there are two ways to formalize these common motifs. One way is to
define a distance threshold and find the subsequences that havemost matches under this
threshold. The second way is to define a number of requiredmatches and determine the
subsequence that has the least distance from these matches. We opted for the second
interpretation as it allows us to reuse the notion of a motif radius. In other words, for
any subsequence s, we find the best k matches within the series and define the radius
as the maximum distance of these matches. Then, the top-1 common-k motif is the
subsequence for which this radius is minimal. To avoid the issue of trivial matches
[9], where nearby sequences have similar distances, we require matches to be at least
p indices apart from each other and disregard the vicinity of the original subsequence



5.6. FINDING THE MOST COMMON PATTERNS 125

s as well. Similar as to how motifs are determined using the Matrix Profile [9], we
opted for an exclusion range ofm/2.

Definition 5.6 (Common-k radius) Given a trivial match exclusion distance p, the
common-k radius r of a subsequence Si(0),m with respect to a series S is the distance
to the k-th bestmatching subsequenceSi(k),m fromS, where each of these bestmatches
Si(1),m, . . . , Si(k),m and the original subsequence Si(0),m are all at least p apart.

∀a, b ∈ (0, . . . , k)2 : a 6= b⇒ |i(a)− i(b)| ≥ p

Definition 5.7 (Common-k consensus motif) Given a a seriesS, the common-k con-
sensus motif of a given length m is the subsequence Si,m, such that the common-k
radius is minimal.

While we cannot use (Anytime) Ostinato or the Matrix Profile to find common
motifs, there is a connection between them. A self-joined Matrix Profile tracks the
distance for each subsequence to the best matching subsequence within the same se-
ries, this corresponds to the radius of the common-1 motifs, where we only consider a
single match. On the other hand, using Ostinato we could find the radius of the top-1
common-k motif if we were to split the series into k + 1 subseries where each sub-
series contained the original subsequence or one of the k matches. Of course, this
would requires us to know the top-1 pattern in advance.

In the next subsection, we present our technique to find the radii for all subse-
quences.

5.6.1 Single Series Radius Profile Algorithm
We show the relation between the distancematrix and the commonmotif radii in Figure
5.7. Again, the distance matrix is a square where each column or row represents a
single subsequence from a series S. Note that we can also apply our technique to find
the most common pattern in a set of series by simply appending the series, with a nan
marker in between.

For a specific subsequence, we can calculate the distances to each subsequence
in S, as shown by the orange column in Figure 5.7. From this distance vector, we
iteratively look for the minimum value (= the best match), each time ignoring the
subsequences within p positions of any minimum found so far, e.g. d0, d1, d2, . . . If
we ignore the distance from our original subsequence d0, the other values are the the
common-1, common-2, . . . radii for this subsequence.

The actual algorithm is straightforward and is shown in Algorithm 11. We iterate
over all subsequences (line 4) and extract the subsequence (line 5). Next, we calculate
the distance to all subsequences (line 6) using the STOMP algorithm [13]. The STOMP
algorithm calculates columns in the distance matrix similar to STAMP, but is faster
when calculating neighbouring columns (i.e. complexity is reduced from O(l2log(l))
toO(l2)). Next, we iterate over all distances from lowest to largest (line 10). We count
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vector, we iteratively find the lowest distance (= best match ), each time ignoring the p subse-
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Figure 5.8: Runtimes for the Single Series Ostinato algorithm for two different collections of
radius profiles on the PAMAP2 dataset. Note that runtimes can vary slightly for different series
due to the inner loop of the algorithm.

the number of non-excluded matches (line 18), mark the exclusion zone in line 19 and
skip excluded distances in line 11. Finally, line 13 to 17 record the needed radii and
skip to the next subsequence once all radii for the current subsequence are found.

The memory complexity is determined by the size of the output: O(hn), where h
is the number of radius profiles to track. The runtime complexity is O(n2l2 log l) due
to the sorting operation that is needed to find the best matches. In Figure 5.8, we show
timing benchmarks in function the series length l.
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Algorithm 11: Single Series Ostinato Algorithm
Input: series: a 1-D vector
Input: m: subsequence length
Input: kList: k for which to find common-k radii
Input: p: exclusion zone (e.g. m/2)
Output: radii: radius values, each column is one subsequence, each row is

one value of k
1 numSubseq = |series| −m+ 1
2 kList = sort(kList)
3 radii = +∞ array of size (|kList|, numSubseq)
4 for c in [0 . . . numSubseq[ do
5 subseq = series[c : c+m]
6 dists = distSTOMP (subseq, series)
7 matchId = 0
8 j = 0

/* Indices to sort dists ascendingly */
9 idxs = argsort(dists)

10 for i, idx in enumerate(idxs) do
11 if dists[idx] == +∞ then
12 continue
13 if matchId == kList[j] then
14 radii[j, c] = dists[idx]
15 j = j + 1
16 if j > |kList| then
17 break

18 matchId = matchId+ 1
19 dists[max(0, idx− p) : min(numSubseq, idx+ p+ 1)] = +∞

5.6.2 Results on the PAMAP2 Dataset

We demonstrate our technique on the PAMAP2 physical activity dataset [4], which
contains accelerometer recordings of participants performing various activities. For
demonstration purposes, we limit ourselves to an extract of the y-accelerometer of the
first subject performing four different activities, as shown in Figure 5.9.

We calculated the common-k radius profile for values 1, 50 and 250 for subse-
quence length 100 (i.e. 1 second of recording). These profiles are shown in Figure
5.10. Again, the distances have been normalized.

We see how the walking, nordic walking and running activity have low radii, mean-
ing that the corresponding signals are repetitive, as can be verified in Figure 5.9. One
exception here is the high common-250 radius for the running activity, meaning that
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Figure 5.9: Data on which we demonstrate the single series radius profile. This 20 minute
extract of the PAMAP2 dataset consists of four activities, separated by transition periods.
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Figure 5.10: Radius profile for the data shown in Figure 5.9 using a subsequence length of
100 (1 second). We see how the radius differs depending on the activity being performed. The
more repetitive the signal, the lower the radius. The radii are lowest for the walking and running
activities, this means that the patterns are most similar through the data. The cycling activity
has a high radius, meaning the subsequences are not repetitive. Gaps in the profile are due to
missing data points.

there are less than 250 good matches to each subsequence, which is most likely a result
of the repetition interval and the exclusion zone for trivial matches. While the radius
profile shows how repetitive each part of the signal is, it gives no direct insight as to
which parts are similar to each other. Fortunately, we can use the radius profile to mine
for common patterns with some additional work.

5.6.3 Finding the Top-k Common Motifs

The top-1 common-k motif1 is easily determined: it is the subsequence for which the
common-k radius profile is minimal. However, finding the top-k patterns is a little
more challenging. Consider we have found the top-1 common-k pattern p1 and also
know its k matching subsequences m1, . . . ,mk. For the top-2 pattern, we obviously
exclude p1. Asm1, . . . ,mk are very similar to p1, it makes sense to also exclude these
as well. However, there might be other sequences thanm1, . . . ,mk that are similar to

1 To remind the reader, this is the pattern for which themaximal distance to nearest k matches isminimal.
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p1, perhaps having some of their k best matches overlap withm1, . . . ,mk. Ideally, we
want to exclude all matches to p1 that we consider as too similar, though we do not
know in advance where exactly this threshold is.

Our approach for finding the top patterns is outlined in Algorithm 12. We start by
finding the top-1 pattern (line 2). Next, we calculate the distances between this pattern
and all subsequences in the series using MASS (line 5). Whenever a subsequence is
a good match (and thus is below a predefined similarity threshold), we exclude both
the subsequence as well as the neighbouring subsequences, by changing the radius to
infinity (lines 8, 9). This process is repeated until no more motifs can be found.

Algorithm 12: Algorithm to find common-k motifs using the Common-k
Radius Profile
Input: series: a 1-D vector
Input: m: subsequence length
Input: radius: radius profile for series
Input: p: exclusion zone (e.g. m/2)
Input: simThresh: similarity threshold
Output: motifIdxs: subsequence indices for all motifs

1 motifIdxs = []
2 minIdx = argmin(radius)
3 while radius[minIdx] != +∞ do
4 motifIdxs.append(minIdx)
5 motif = series[minIdx : minIdx+m]
6 dists = dists(motif, series)
7 for i in [0 . . . |radius|[ do
8 if radius[i] <= simThresh then
9 radius[max(0, i− p) : min(|radius|, i+ p+ 1)] = +∞

10 minIdx = argmin(radius)

5.6.4 Common Motifs in the PAMAP2 Dataset

Figure 5.11 shows the top-10 common-100 motifs for the PAMAP2 dataset, along with
the location of each of the 100 matches in the data. We see that the top-1 and top-5
motif are very similar and correspond to the running activity. The other eight motifs are
shared between the walking and nordic walking activity. While the occurrences show
how the patterns are distinguishable between these activities, there are overlaps, most
noticeable for pattern six. We used a distance threshold of 0.14, which was determined
manually after inspecting the first motif. A more lenient threshold of 0.2 resulted in
less motifs with a small radius and a less clear distinction between the two walking
classes, though results were still representative.
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Figure 5.11: The top-10 common-100 motifs for the PAMAP2 dataset. On the left we show the
motif (blue) overlayed with the 10 best matches (light gray). On the right, we show the locations
of the 100 matches that fall within the radius of the motif. We see that the common motifs
originate from the three activities with repetitive behavior. Some motifs appear similar to each
other, which can be explained due to slight variations of the activity speed, but also due to an
imperfect similarity threshold.
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5.7 Conclusion

In this chapter we tackled the question on how to find repeating subsequences in one or
more time series containing real values. For this, we have introduced a new time series
primitive based on the notion of the consensus motif radius, i.e. the radius profile. This
radius profile contains the radius for each subsequence in a series, where the radius is
the maximum distance needed to reach a predefined number of best matches.

A first case concerns finding repetition across multiple series. For this we have
extended the Ostinato algorithm, which calculates the top-1 radius, to an anytime ver-
sion that calculates all radii. Our Anytime Ostinato algorithm can calculate an exact
profile or make an estimate in a fraction of the time. Even an exact calculation can
still be faster than Ostinato for some types of input data. Using the consensus radius
profile, one can easily find the k patterns that are most similar over (a subset of) the
series collection, i.e. the consensus motifs.

A second case concerns finding well-preserved repetitions in one or more series,
irrespective of where they are repeated. Here, we have introduced a new algorithm to
find the common-k radius profile, where k represents a predefined number of matches.
The profile can be used to visualize the repetitive nature of data and to find the patterns
that are repeated in a series, i.e. the common motifs.

Future work remains on finding ways to speed up the calculation of the common-k
radius profile. Currently the algorithm depends on column-wise calculations in order
to ignore trivial matches, which makes an anytime variant non-trivial. Additionally,
future work could look into finding repeating patterns where the length varies between
series, e.g. stretched occurrences. Finally, We also foresee further refinements of our
techniques applied to specific use cases. For example, time series classification using
shapelets could benefit from our techniques to find discriminative patterns.
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Chapter 6

A Complete Software Stack for IoT
Time Series Analysis that Combines
Semantics and Machine Learning –
Lessons Learned from the Dyversify
Project

The techniques that have been presented so far have all been demonstrated on well-
isolated use cases, as the result of proper scientific methodology. However, many of
the challenges faced by companies applying those techniques are related to aspects be-
yond the low-level technicalities that researchers tend to focus on. Aspects like data
management and system integration are examples of such high-level challenges that
need to be solved before the solutions of the previous challenges can be put into prac-
tice.

One common application of insight mining is anomaly detection on streaming data,
as a type of automated systemmonitoring. Typical challenges here include the setup of
scalable and secure systems to ingest and store large data streams, detection of anoma-
lies without labeled data, and the fact that not all users are data scientists. Indepen-
dently, all of these challenges have several solutions that have been well researched.
Data processing can be handled by streaming frameworks or cloud solutions, unsu-
pervised or rule-based techniques can function without anomaly labels, and anomalies
can be handled using automated systems or user-friendly dashboards. However, most
companies lack the experience in one or more aspects and face difficulties in efficiently
combining these systems. Furthermore, companies tend to privatize their experiences
and knowledge, meaning that every company is fated to endure the same learn-by-
doing process. This means there is also merit in system research, focusing on how
different state-of-the-art techniques can be combined into a single system.
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Therefor, this chapter describes a system that combines various state-of-the-art
techniques and practices, and the experiences and lessons gained from it. This pro-
totype combines semantic knowledge-driven rule-based anomaly detection with unsu-
pervised and supervised pattern case-based event detection techniques, uses a seman-
tic dynamic dashboard to ease user interaction and gather event feedback, and uses a
highly scalable deployment system to solve today’s shortcomings on system integration
research.

My contributions can be summarized as follows:

1. Design of streaming matrix profile based techniques for unsupervised anomaly
detection and supervised event detection using feedback from a dynamic dash-
board, with support for failure recovery.

2. Contributions to the design of the event messaging format and complete archi-
tecture.

3. Contributions to the system integration design, project management and prob-
lem resolution.
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Abstract Companies are increasingly gathering and analysing time series data, driven
by the rising number of IoT devices and increased bandwidth capabilities. Many works
in literature describe analysis systems built using either data-driven or semantic tech-
niques. Little to no works have combined these two branches of research in a com-
plete architecture. Dyversify, a collaborative project between industry and academia,
researched several open research questions including the combination of data-driven
(non-semantic) and knowledge-driven (semantic) anomaly and event detection, seman-
tification of streaming data, and dynamic dashboarding using semantics. All research
was combined in a working prototype as a full, scalable microservice architecture
comprising time series ingestion, long term storage, visualisation, user feedback, data
semantification and inter-service communication in both semantic and non-semantic
formats. This stack was integrated with data sources of two industry partners: Ren-
son, a manufacturer of ventilation systems, and Televic Rail, a train manufacturer. In
this chapter, we describe the Dyversify software stack applied to the Renson use case,
where we detect events in ventilation metrics in soft-real time. We discuss the system
architecture, provide a high-level description for all individual components and relate
design choices to usage requirements. We discuss our experiences building and test-
ing the system, including a number of lessons learned. With this work, we shed light
on the challenges involved in a full-stack time series processing system that combines
machine learning and semantic methods. We think this work may act as a practical
reference for parties aiming to set up a similar hybrid system.

6.1 Introduction

Historically, data analytics has always been a core part of research enterprises and large
scale tech companies. With the uprise of Internet of Things (IoT), however, more and
more enterprises start to gather data, resulting in analytics of these data becoming rel-
evant for a growing range of domains. IoT is expected to reach a market share of over
1000 billionUSD and have over 24 billion connections by 2025 [1]. IoT involves a wide
range of applications including home automation, traffic control or climate research.
But also in factories, machineries are equiped with IoT sensors. Here, data analytics
is done to enable predictive maintenance. Predictive maintenance tries to optimize the
timing of maintenance operations: early enough to prevent breakdowns but not too
early as to minimize maintenance downtime and the cost of replacing healthy compo-
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nents. Predictive maintenance use cases are not limited to factories, they apply to any
product or service provider aiming for a better customer experience. The market value
of predictive maintenance is expected to grow exponentially the coming years, to over
25 billion USD by 2025 [2].

While most research publications solely focus on specific analysis algorithms,
many other components are needed to create a complete data analysis stack. When
a measurement is made, it needs to be transferred to an analysis algorithm. In gen-
eral, data is collected on dedicated machines and processed in bulk, though for some
time-critical applications, trivial on-machine calculations may suffice. In either case,
storage of measurements is useful for later investigations or when new analysis algo-
rithms are retrospectively introduced. Proper documentation of all metrics is also vital
at this step. When detecting anomalies, the user needs to be informed on the details
in a timely manner. User feedback can also be valuable to optimize the algorithms or
visualisations, for example by labeling anomalies for future reference. Finally, these
systems should be able to scale to allow a rising number of monitored devices and
be resilient so no relevant events go undetected when the system experiences (partial)
failure.

In the imec.icon Dyversify project1, academia and industry partners collaborated
to investigate how machine learning and semantic techniques can be combined for
improved anomaly and event detection on time series. We created a working, full-
stack prototype combining all of the capabilities listed above. The resulting stack uses
a microservice architecture, where different microservice components were developed
by different teams. We validated our technology using two use cases with real world
data provided by our industrial partners: Renson, Televic Rail and Cumul.io. Televic
applied the full-stack solution in the railway sector for monitoring train bogies, Renson
applied it to monitor indoor ventilation systems, and Cumul.io validated integration
possibilities in their dashboarding platform.

In this article, we discuss the Dyversify full-stack architecture, high level descrip-
tions of the individual components, design choices made and discussion of problems
encountered. We focus on the Renson use case, where air quality metrics from con-
sumer owned ventilation units are used for event and anomaly detection. While we
do discuss the underlying data analysis techniques, they are not the primary focus of
this article. Instead, they serve to give the reader a complete view of the system. As
such, we believe this article will be most interesting for parties who seek to build any
type of (semantic) data analysis pipeline, from sensor to dashboard, but lack relevant
experience in full-stack development.

The remainder of this work is structured as follows. We start by giving background
information about the Dyversify project and the Renson use case in Section 6.2, as well
as a brief introduction in the Semantic Web domain. An overview of related literature
follows in Section 6.3. We discuss the architecture and individual components in Sec-

1 https://www.imec-int.com/en/what-we-offer/research-portfolio/dyversify
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tion 6.4. We finish by discussing our experiences and lessons learned throughout the
project in Section 6.5 and conclude in Section 6.6.

6.2 Background information

6.2.1 The Dyversify Project
Dyversify is an imec.icon project, where multi-disciplinary teams from academia and
industry work together to do demand-driven research. During the two-year project, a
total of seven different teams worked together, four different research teams from ID-
Lab, Ghent University and three industry partners, i.e. Renson (ventilation and shading
products), Televic Rail (train components and systems) and Cumul.io (dashboarding
platform).

As a research project, each group worked on specific topics including dynamic
dashboarding using semantic technologies, adaptive anomaly and event detection for
time series using both machine learning and knowledge-driven techniques, and scal-
able services. All research components were brought together in a working prototype
for a full-stack data analysis pipeline that processed real-world data coming from Ren-
son and Televic. This stack includes time series data ingestion and persistence, time
series anomaly and event detection, data semantification, visualisation in a dashboard
using dynamically configured widget and a user feedback mechanism. The prototype
was built as a scalable and resilient microservice architecture.

This article does not cover all research topics of Dyversify in detail, but focuses on
the resulting system as a whole. We discuss the stack architecture, give a high level
insight into individual components and describe the experiences we learned along the
way. To streamline our story, we will everything using the Renson use case.

6.2.2 Renson Use Case
Renson is a Belgian company that produces and sells shading and facade cladding el-
ements, as well as ventilation products. One of their recent products for ventilation
is the Healthbox 3.0, a mechanical extraction ventilation unit. The Healthbox regu-
lates the airflow in connected rooms, based on various air quality metrics such as air
humidity, CO2 levels or the presence of volatile organic compounds (odours). The
ventilation shaft of a room is connected to the Healthbox using a valve outfitted with
sensors. Different types of valves exist, each having sensors tailored for a specific type
of room.

The Healthbox can be configured to upload the metrics of the valve and Healthbox
sensors to Renson, who uses this data for a number of reasons. First and foremost, this
data is used to allow users to monitor their indoor air quality using an app. Besides
this, Renson aims to use this data to monitor the performance of their units, detecting
specific in-house events that affect air quality (e.g. showering), or to flag common
installation errors for new customers, such as a valve being used for the wrong type of
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room, which could lead to improper ventilation. Each valve, as well as the Healthbox
itself, tracks between 8 to 12 metrics. For this use case, aggregated values are sent in
30 second intervals.

6.2.3 Semantic Web

Originating from the initial goal to allow intelligent software agents to perform sophis-
ticated tasks autonomously, Semantic Web is now a wide research domain and covers
a wide range of technologies. We limit this introduction to the two topics mentioned in
this work: the semantic data model, i.e., the Resource Description Framework (RDF),
and semantic reasoning.

In the semantic data model, knowledge is structured as graphs, as opposed to hi-
erarchical or tabular formats common in databases. RDF is an abstract data model
that has to be serialized before it can be exchanged. Three common serializations are
RDF/XML (XML based), JSON-LD (JSON based) and Turtle (text based). Tradition-
ally, merging (non-semantic) datasets from different sources is cumbersome because
different (local) identifiers are used which do not match across datasources or due to
differences in the data format (e.g. JSON versus XML). As a result, merging different
non-semantic datasets often involves manual operations.

In RDF, instances and the relationships between them are identified using globally
unique URIs instead of names or numbers, allowing disambiguation between concepts
that share the same name. Ideally, each URI is resolvable and provides (multilingual)
documentation about the corresponding concept. When different data sources follow
best practices and correctly reuse existing concepts to construct a dataset, these datasets
can be merged without additional work. Conceptually, reuse is straightforward: prop-
erties are typically bundled in online vocabularies or ontologies and instance identifiers
should be reused from an authoritarian source. RDF is a well suited means to exchange
data between independent parties due to these properties [3], and has been adopted by
instances who actively share data, such as government registries [4] or libraries [5].

A second advantage of using URIs is that data becomes usable for machines since
there is no need for human interpretation. This has lead to semantic reasoners, i.e.
tools that derive new data by combining existing data with rules of varying complexi-
ties. Various semantic reasoners exist, with more expressive reasoners typically being
slower [6].

6.3 Related Literature

In this section, we present related literature. We first discuss architectural designs for
processing streaming data, which focuses on system design. Next, we discuss literature
on stream processing, i.e. how data is used by a system.



6.3. RELATED LITERATURE 141

6.3.1 Streaming Architectures

Processing streaming data is often discussed in the context of big data analytics and has
been applied to many use cases including systemmonitoring [7, 8], smart cities [9, 10],
service monitoring [11, 12, 13] or marketing [14]. The lambda [15] and kappa [16]
architectures are two well known high level architectures in this domain. The lambda
architecture consists of a fast (sometimes approximated) analysis flowwhich consumes
real-time data and a batch-based flow which uses stored historical data. The lambda
architecture is suited for tasks where both real-time updates and historical insights
are useful, such as traffic monitoring [17], or when data may be corrected afterwards
[14]. The kappa architecture simplifies the lambda architecture by dropping the batch
analysis flow. Code reuse is better in kappa architectures because the same flow is used
for updating old analytics or calculating newly added analytics.

Both architectures only provide high-level guidelines and are typically imple-
mented using stream processing frameworks such as Apache Storm, Flink or Spark.
The concept of these frameworks is simple: a collection of worker nodes is set up and
divides the workload in an efficient manner. This approach is both resilient and hor-
izontally scalable as the workload of failed workers is automatically reassigned and
new worker machines may be added as needed. Several works exist that compare the
features or performance of these frameworks for different use cases [18, 19, 20]. An-
other work additionally evaluates Kafka Streams and IBM Streams [21]. However, the
choice of technology remains a difficult one, as frameworks under active development
may improve over time and performance can even be influenced by the size of the
messages being consumed [22].

Another common architecture for stream processing is the microservice architec-
ture, where different subtasks of an application are captured into dedicated services.
Each service is an independent component that, depending on configuration, interacts
with other services to create the full application. Similar to software libraries or mod-
ules, microservices are a form of abstraction making them easier to test or maintain and
promote reuse. However, they distinguish themselves by being reusable across appli-
cations through instance sharing, their ability to scale independently and their ease of
integration with other technologies or languages [23, 24]. Again, similar to the lambda
and kappa architectures, the microservice architecture also only exists on a high level
and leaves much freedom. Practically, they are often implemented as Docker images
that interact using REST APIs or configured message brokers such as Kafka or Rab-
bitMQ. Note that a microservice architecture can be combined with a lambda or kappa
architecture [17, 25]. Microservice architectures have been used on data streams for
e-commerce [24] and intelligent transport systems [10].

Fog computing is another paradigm often associated with stream processing at
large scale [26]. Instead of collecting and processing all data streams in a central
location, the data streams are partially analyzed or aggregated in advance. This can
result in lower bandwidth needs or a faster response detection rate for simple events
[9].
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Coming from the semantic domain, the MASSIF platform suggests a modular sys-
tem for IoT services [27]. Data is ingested and a semantic converter is chosen using a
data attribute. After conversion the data is added to a semantic data bus from which
independent services consume, process and publish data. As MASSIF was mainly
meant for low-frequency event data from IoT services, it was later adapted to Stream-
ing MASSIF to handle high frequency data streams [6]. Here, data is filtered by fast
operators before being passed to slower, but more expressive reasoners in a process
called cascading reasoning. The platform has been used in healthcare [28] and smart
(nursing) home [29] prototypes.

While some works do include descriptions of data ingestion [17, 11], visualisation
[30, 31], feedback mechanisms [17], deployment [11] or practical lessons learned [30,
14], most do not. In fact, none of these works covers the complete picture despite
being very relevant for less experienced readers. We aim to fill this gap with our work,
and detail every part of our streaming architecture, as well as valuable experiences we
learned during the development and testing process.

6.3.2 Stream Processing

In the context of big data stream processing, two major goals can be discerned: deriv-
ing insights or statistics to help humans make informed decisions [14, 32], or anomaly
detection about the process generating the data stream [8, 17, 11]. The latter is a com-
mon theme in data stream processing that lacks the volume to be seen as big data, with
use cases including computer network monitoring [12], water analytics [30] or HVAC
fault detection [33]. Many of these approaches extract statistical features, typically
over predefined time windows, and use clustering, correlations or other well known
machine learning methods to find outliers [34, 33, 12]. Many of these operations are
well supported within the aforementioned streaming frameworks, resulting in many
works using them for anomaly detection [7, 8, 25, 12].

Pattern based approaches such as the Matrix Profile [35] work by comparing series
subsequences rather than using statistical features. The Matrix Profile can be used to
find unique subsequences (discords) which can be considered anomalous, as well as
matching patterns (motifs).

Semantic streams can be processed using expressive reasoning techniques. These
RDF Stream Processors infer additional facts from the data using background data and
domain context. These additional facts can then be used to inform users or trigger
other actions. Stream reasoning is a broad research domain and more details can be
found in the survey by Dell’Aglio et al. [36].

The system described in this work utilises three different data analysis techniques,
packaged in four microservices. First, a random forest classifier is used to detect faulty
installations by comparing configured versus detected room types. The next two com-
ponents find unique respectively repeating patterns in incoming signals using the Ma-
trix Profile in an online fashion. Finally, a semantic reasoning component evaluates
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Figure 6.1: Flow of measurement (left) and event data (right) throughout different compo-
nents. Events are generated by the components after processing measurements. The thick bands
represent data flow through Kafka topics, while arrows represent flow through HTTP API calls.
Light colors indicate non-semantic (JSON) data; dark colors indicate semantic (JSON-LD) data.
Measurements are ingested and persisted by Obelisk. The event detection (ED) and anomaly de-
tection (AD) components process the measurements and produce messages for certain observed
patterns. The RML component maps non-semantic data to a semantic format and Stardog is a
semantic database that is used to store the semantic events. The dashboard is the only user-facing
component and visualises both measurements and detected anomalies/events.

the signal for expert-defined patterns using reasoning over signal windows. These are
described in detail in Section 6.4.6.

6.4 Dyversify Architecture

In this section we discuss the full-stack architecture of our system. We start with a
high level overview and continue to discuss individual components in the order they
are encountered by incoming data.

6.4.1 High-level Overview

To understand the flow of data throughout the system, it is easiest to consider measure-
ment data and event data (created by processing measurements) separately. Both flows
are shown in Figure 6.1.

The left of Figure 6.1 shows the flow of measurements throughout the system.
Measurements originate from individual Healthbox devices, as described in Section
6.2.2, and are received by a gateway on Renson premises. The Healthboxes have an
internal memory to buffer measurements to prevent data loss in case of connectivity
issues to the gateway. The gateway forwards all measurements to the Obelisk compo-
nent, which serves as the ingestion system as well as long term storage. Obelisk pushes
all measurements in a JSON format to a Kafka message bus that is consumed by other
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components. Two event detection (ED) and two anomaly detection (AD) components
consume all measurements and output an event message when a specific condition or
pattern is observed. The RML component is responsible for mapping measurements to
their semantic form, which are needed by the expert rules and dashboard components.
The dynamic dashboard component is intended for user interaction: it can visualise
the data streams for all devices, updating as new measurements flow in. We utilise
the term dynamic as the dashboard allows the user to construct visualisation widgets
entirely to his liking while the dashboard reduces choice overload and manual config-
uration by suggesting visualisation widgets, for selected sensors, based on the sensor’s
semantic annotation.

The event stream is shown on the right of Figure 6.1. Events are generated by the
anomaly and event detection components whenever they find a relevant pattern in the
incoming measurements. All components output events in a JSON format which are
converted to a semantic format by the RML component, except for the expert-rules
component, which works internally using semantics as well. The semantic events are
ingested by three different components. The dynamic dashboard triggers (or updates)
user notifications whenever an event is ingested. Whenever the MP-events component
receives an anomaly event from the MP-outliers component, it will start a new pattern
detector to find that specific pattern in new measurements. Finally, the Stardog com-
ponent is a database that permanently stores the semantic events and can be used by
the dashboard and MP-events component to retrieve historical events. Note that the
dashboard also outputs events, these are in fact previously ingested events that have
been updated by user interaction, such as the labeling of an anomalous pattern.

The precise definition of “anomaly” varies from source to source. Some con-
sider anomalies as strictly undesired (e.g. a malfunction), others prefer outside of
normal conditions (e.g. machine maintenance) or simply as previously unknown (e.g.
higher power consumption for specific configuration). In this work, we use the term
“anomaly” to indicate a previously unknown pattern, which may be undesired (e.g.
malfunction) or normal behavior (e.g. opening a window for the first time) and use the
term “event” to indicate patterns recognised using some known rule (e.g. a humidity
peak in a bathroom indicates a shower). However, when discussing the Kafka message
bus, the event topic contains both events and anomalies, as hinted by Figure 6.1.

6.4.2 Microservices & Deployment

All components are implemented as microservices using Docker containers and are de-
ployed on a Kubernetes cluster, using Helm as management tool. Services that require
data persistence are configured with Kubernetes persistent volumes, so data is not lost
if a service is restarted. We used Kubernetes resource management to specify CPU
and RAM quota for all services, as to prevent system degradation in the case of mis-
behaving services, which is not uncommon in development. By using microservices,
each team could develop and test their service independent of other teams, this allowed
freedom in both planning and choice of technology. In stream processing frameworks
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such as Storm, Flink or Spark, it can be more challenging to include techniques that
are not available out of the box. The only downside we experienced from using a mi-
croservice architecture was the increased effort needed when the format of messages
(e.g. events) changed.

All services are deployed on the IDLab Virtual wall2, a server park of over 350
machines. Practically, the Dyversify project uses four pcgen3 nodes (2x Hexacore Intel
E5645 2.4 GHz CPU, 24 GB Ram, 250 GB harddisk) and two pcgen4 nodes (2x 8core
Intel E5-2650v2 2.6 GHz CPU, 48 GB Ram, 250 GB harddisk) for all services except
for Obelisk. Obelisk is deployed on a dedicated Kubernetes cluster and hardware, but
is used by 12 other projects alongside Dyversify. Obelisk is deployed on three nodes
with the following hardware: Intel Xeon Silver 4114 2.2 Ghz CPU (40 cores) and 264
GB Ram.

6.4.3 Time Series Ingestion & Persistence: Obelisk

The ingest system is responsible for accepting all sensor data. For a general IoT case,
this component needs to be secure, resilient and able to handle parallel, high throughput
time series. Long-term data persistence is also required for visualisation and initializ-
ing new stream processing models or updating old ones.

As ingestion service, we use Obelisk [37, 38], a scalable platform for building ap-
plications on IoT-centric time series data that was developed in-house byGhent Univer-
sity and imec in the scope of several IoT projects [39, 40]. Obelisk provides a stateless
HTTP API for storing and retrieving data and uses authentication based on OpenID
and OAuth 2.0, authorization is done by assigning users to project scopes. Internally,
Obelisk consists of several distributed microservices that are managed by Kubernetes
and are deployed on dedicated hardware with fail-over capacity (see Section 6.4.2).

Obelisk is based on Vert.x, an event-driven and non-blocking JVM framework that
can handle high concurrency using a small number of kernel threads. It uses InfluxDB
to persist time series and mongoDB for storing metadata and allows rates of up to 6000
measurements per second [38]. Obelisk is foreseen to become open-source and free
for non-commercial use or with licensing options for commercial usage by the second
half of 2021.

Alternatives to Obelisk include the Open Source FiWare ecosystem. Testing
showed scalability issues with passing data to and retrieving data from the FiWare
context broker, and only in later versions was historical data aggregation added. These
performance issues were also observed by external researchers [41]. Other options
include proprietary solutions like Microsoft Azure IoT Hub, Google Cloud IoT Core
and the AWS IoT Platform. As these latter solutions come with a substantial vendor
lock-in (with no control over the evolution of APIs a.o.), this approach was avoided.

As shown in Figure 6.1, the measurements made by the Healthbox devices are sent
to Obelisk. Once received, the measurements are validated, persisted and forwarded to

2 https://doc.ilabt.imec.be/ilabt/virtualwall/
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other components through the Kafka message broker. An example of a measurement
message is shown in Listing 6.1, it contains a single humidity measurement from a
single device for a specific timestamp.

Listing 6.1: Example of a measurement JSON message. The geohash key specifies information
regarding location of the measurement, but was not used in Dyversify.
{

" me t r i c I d " : " s e n s o r . i n d o o r _ r e l a t i v e _ h um i d i t y . humid i t y : : number " ,
" t imes t amp " : 1549973410001 ,
" t imeUn i t " : "MILLISECONDS" ,
" s o u r c e I d " : "HEALTHBOX3.171030 SD0005 . 2 " ,
" geohash " : n u l l ,
" v a l u e " : 40 .052812500 ,
" t a g s " : {

" p a r t n e r " : " r en son " ,
" c o n t e x t " : " i c on " ,
" p r o j e c t " : " d y v e r s i f y "

}
}

6.4.4 Message Broker: Kafka
The message broker is responsible for the communication between all other compo-
nents. Together with the ingest system, it should provide enough throughput and be
both scalable and fault tolerant. Additionally, our use of time series analysis techniques
required that messages remained ordered and were not lost in the case of failure, and
messages had to be processed according to the at-least-once principle.

We selected Kafka as message broker. Kafka is a high-throughput, low-latency,
resilient and scalable message passing platform suitable for handling real-time data
feeds. Message streams are organised in topics which can be further subdivided into
one or more disjoint partitions. One topic typically corresponds to one type of message
(e.g., measurements or events), whereas partitions divide a topic into logical groups
(e.g., groups of machines being monitored). This structure supports Kafka consumers
to be horizontally scalable through the use of consumer groups. In Kafka, partitions
are automatically divided amongst all consumers that belong to the same consumer
group, meaning that the workload decreases as more consumer instances are created.
This principle is visualised in Figure 6.2.

Kafka also allows for resilient data processing by having data consumers commit
their position in each stream at periodic intervals. When a consumer crashes or gets
added in response to an increased system load, it can resume processing from the most
recent checkpoint. This way, every message is guaranteed to be processed, though
some messages may be processed multiple times as a result of a crash. Kafka itself is
made resilient through its distributed, redundant deployment.

We utilise Kafka topics to differentiate four types of messages: measurements,
semantic measurements, anomalies and semantic anomalies. The measurement topics
contain the sensor data as received by the ingest system, while the event topics contain
information about the detected events. By using Kafka partitions, any consumer can
be made horizontally scalable through consumer groups. For example, we use five
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Figure 6.2: Scalability through group based partition assignment in Kafka. Left: One consumer
of type X and group Gx and one consumer of type Y and group Gy reading from a topic with two
partitions, each consumer is assigned all partitions. Right: A second instance of consumer X
and group Gx is added. Kafka divides the partitions over consumers of the same group, lowering
the load of both instances.

partitions for the measurement topic, meaning that up to five instances of a single
anomaly detection algorithm can process incoming measurements at the same time if
required.

Alternative message brokers would be RabbitMQ (a traditional message broker
that does not focus on persisting messages), ZeroMQ (a lightweight messaging system
which is aimed at high throughput but which lacks advanced features), or Apache Ac-
tiveMQ (supports both broker and peer-2-peer messaging). We choose Apache Kafka
due to its inherent focus on high reliability and scalability. An alternative to our choice
for Kafka would be found in Apache Pulsar, which have similar feature sets, but Kafka
was the more mature offering at the time this research was performed, especially when
deployed in a Kubernetes cluster environment.

6.4.5 Semantic Conversion: RML

The Dyversify project combines machine learning and semantic technologies, as such,
a step to transform data to a semantic format is needed. Specifically, the dynamic
dashboard and expert-rule-based components rely only on semantic data. It would
be possible to include this conversion for every data outputting service in our system,
but this would require teams not familiar with semantic technology to include it in
their service. This in turn would have required more testing and development effort
for those teams. Furthermore, Dyversify wanted to actively explore how semantic and
non-semantic services could work together, so isolating semantic components was not
useful in this regard. We opted for a separate conversion service that could be reused
by other services. Data throughput is the main requirement for this service.

We selected our in-house RMLStreamer [42] for this component, which is a stream-
ing implementation of the RMLMapper [43], a tool that executes RML (RDFMapping
Language [44]) mappings. Using RML, we can define a mapping from various com-
mon input formats, including JSON, XML or CSV, to a semantic format. Note that
RML mappings are themselves specified using RDF. The actual conversion is done by
the RML-streamer, a tool that executes the mappings defined in RML. Under the hood,
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the RMLStreamer uses Apache Flink to distribute the workload to different nodes. We
utilised four worker nodes and one supervising node in Dyversify.

The format of measurements was defined by Obelisk and always had the same
structure, making mapping straightforward. However, the information in the event
messages could differ depending on the origin service. To simplify conversion, we
defined a JSON format (discussed in Section 6.4.6) with optional fields for event mes-
sages that would be used by all event-generating components. As missing fields are
simply ignored in the mapping process, we only need a total of two mappings: one for
measurements and one for events.

The mappings were made by a semantic expert using YARRRML [45], a more
user-friendly textual format that compiles to RML. While several formats are possible
to serialize semantic data, we selected JSON-LD since it allows data extraction using
well-known JSON constructs (opposed to SPARQL constructs), which was again use-
ful for lesser semantic-experienced teams and early prototyping. Mappings used the
SSN (Semantic Sensor Network) [46], SOSA (Sensor, Observation, Sample, and Ac-
tuator) [47] and Folio [48] ontologies, the latter of which was developed specifically
for both use cases in Dyversify. Listing 6.2 shows the semantic version of the measure-
ment in Listing 6.1. Note that this example is not fully valid RDF, as the resultTime
does not specify a valid ISO timestamp, but rather an epoch timestamp. This is due to
a limitation in the RMLStreamer, which did not yet support functions in mappings at
the time of the Dyversify project. Consumers of semantic events took this quirk into
account instead.

Listing 6.2: The semantic JSON-LD equivalent of the measurement shown in Listing 6.1.

{
"@id" : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son / t h i n g s /HEALTHBOX3.171030

SD0005 . 2 / m e t r i c s / s e n s o r . i n d o o r _ r e l a t i v e _ h um i d i t y . humid i t y%3A%3Anumber / o b s e r v a t i o n s
/1549973410001" ,

"@type " : " h t t p : / /www.w3 . org / ns / s o s a / Ob s e r v a t i o n " ,
" h a sS imp l eRe s u l t " : "40 .0528125" ,
" o b s e r v e dP r o p e r t y " : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son / t h i n g s /

HEALTHBOX3.171030 SD0005 . 2 / m e t r i c s / s e n s o r . i n d o o r _ r e l a t i v e _ h um i d i t y . humid i t y%3A%3Anumber "
,

" r e s u l t T ime " : "1549973410001" ,
" @context " : {

" o b s e r v e dP r o p e r t y " : {
"@id" : " h t t p : / /www.w3 . org / ns / s o s a / o b s e r v e dP r o p e r t y " ,
"@type " : "@id"

} ,
" r e s u l t T ime " : {

"@id" : " h t t p : / /www.w3 . org / ns / s o s a / r e s u l t T ime " ,
"@type " : " h t t p : / /www.w3 . org / 2 0 0 1 /XMLSchema# dateTime "

} ,
" h a sS imp l eRe s u l t " : {

"@id" : " h t t p : / /www.w3 . org / ns / s o s a / h a sS imp l eRe s u l t " ,
"@type " : " h t t p : / /www.w3 . org / 2 0 0 1 /XMLSchema# f l o a t "

}
}

}

SPARQL-Generate is an alternative tool for semantic conversion which is based on
an extended SPARQL syntax. However, it is less performant than the RMLStreamer
[42]. RocketRML [49] is a Node-JS based mapper which also uses RML mappings.
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It claims faster timings than the RMLMapper but does not implement the full func-
tionality. Finally, CARML is a converter that struggles with large datasets in batch
conversion, but might be suited for streaming cases [50]. Of course, mapping through
a custom-made script is also possible, but this ignores the benefits that supporting tools
might offer, such as graphical editing or correctness checking [51].

6.4.6 Event/Anomaly Detection
A wide range of different analysis techniques exists, as shown in Section 6.3. The
choice of technique often depends on the use case, effort to implement and charac-
teristics of the technique such as throughput or data requirements. Techniques can
also be combined, either as single service using boosting or bagging approaches or as
multiple, independent services to further improve performance [52]. Some common
requirements of techniques include availability of historic data, availability of labeled
data and scalability.

In Dyversify, we investigated how to leverage the Healthbox data to detect certain
user events as well as anomalous system behavior. Three teams, each with different
backgrounds and a focus on different techniques, implemented their techniques as sep-
arate microservices. This resulted in four different microservices, as shown in Figure
6.1. We discuss each in detail below.

Each of the detector instances reads measurements from the (semantic) measure-
ment Kafka topic and writes any detected anomaly/event to the (semantic) event Kafka
topic. Components that require historic data query Obelisk for measurements or the
Stardog database for anomalies and events. Each detected anomaly/event is described
with an event identifier, the originating Healthbox, the metric, the time range of the
event, the timestamp of the detection, a description and an identifier of the detector.

Listing 6.3 shows a JSON event as generated by the MP-events component. The
id field contains an identifier for the event. We opted to have each component create
HTTP ids, as to simplify the semantic conversion and for easier differentiation of the
events when debugging. The update field indicates whether the event is an updated
version of a previously published event, and is used to update the records in Stardog.
The generatedBy field provides provenance information. A versioning scheme for the
component was foreseen, but did not see real use in Dyversify. The timestamp indicates
the detection time, and the anomaly field gives all information regarding the event,
including the occurrence time of the event (in epoch time). Note that the timestamp
and anomaly may differ when older data is being processed, which might occur when
a processor has been offline for a while. Finally, the matches field is specific to the
MP-events component, it links the pattern that was matched.

Listing 6.3: JSON representation of an event detected by the MP-events service.
{

" i d " : " h t t p s : / / g i t l a b . i l a b t . imec . be / d y v e r s i f y / d y v e r s i f y −ml−anomaly − d e t e c t o r /KPD/HEALTHBOX3
.171030 SD0005 . 2 / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n : : number /1532217600000/1532217601000" ,

" upda t e " : f a l s e ,
" gene r a t edBy " : {
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" i d " : " h t t p s : / / g i t l a b . i l a b t . imec . be / d y v e r s i f y / d y v e r s i f y −ml−anomaly − d e t e c t o r / ns / known−
p a t t e r n − d e t e c t o r / 1 " ,

" a l go " : " M a t r i x P r o f i l e " ,
" v e r s i o n " : 1

} ,
" t imes t amp " : "2019−11−25T15 : 33 : 04.333950+00 : 00" ,
" anomaly " : {

" t ype " : [
"Anomaly " ,
" KnownPatternAnomaly "

] ,
" d e s c r i p t i o n " : " P a t t e r n s i m i l a r t o Window opened " ,
" p a r t s " : [

{
" t h i n g " : "HEALTHBOX3.171030 SD0005 . 2 " ,
" p r o p e r t y " : " s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n : : number " ,
" from " : 1532217600000 ,
" t o " : 1532217601000

}
]

} ,
" matches " : {

" i d " : " h t t p s : / / g i t l a b . i l a b t . imec . be / d y v e r s i f y / d y v e r s i f y −ml−anomaly − d e t e c t o r /UAD/
HEALTHBOX3.171030 SD0005 . 2 / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n : : number
/1532449470000/1532478210000" ,

" s i m i l a r i t y " : −1
}

}

The same information is present in the semantic format shown in Listing 6.5 in
6.6. The JSON-LD version is more verbose due to constraints imposed by the used
ontology and the need to include a JSON-LD context, which links the JSON keys to
semantic concepts.

Because detector deployments may also crash or be rescaled, they use Kafka to per-
sist their progress periodically. To avoid issues with reporting a single event multiple
times when measurements are re-processed after a crash, we generate event identifiers
based on the timestamp of the measurements. This way, duplicate detections will have
the same identifier and require no special treatment.

6.4.6.1 Anomaly Detection: Valve Classifier

The valve classifier is the most straightforward component. It aims to detect incorrectly
installed valves, a common installation error as described in the use case explanation.
It does this by using the measurements to determine the most likely room type and
comparing this prediction against the type of configured vent.

Techniques evaluated include neural networks, decision trees, random forest and
Gaussian processes. Ultimately, we settled for a random forest classifier that discrimi-
nates between bedrooms, bathrooms and an unknown type. Features were obtained by
subsampling the measurements to 5 minute intervals, collecting a full day of absolute
humidity measurements, and generating 7 statistical features. The humidity signal was
chosen as it is present in every possible valve type. The classifier was trained on data
of 209 bathrooms and 114 bedrooms and utilised oversampling to compensate the data
imbalance.

The valve classifier service reads data from Kafka and buffers it until a complete
day is ingested, then it uses the pretrained random forest to classify the room and out-
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puts an anomaly message if there is a mismatch to the configured room type. As each
prediction took only 50 ms per room, scalability was not an issue for this service. The
classifier was built in Python using Scikit-learn [53].

6.4.6.2 Anomaly Detection: MP-outliers

This service was created to investigate how the Matrix Profile [35] could be used to
detect anomalies in the measurements. These anomalies in turn could indicate anoma-
lous system behavior or specific user actions that affect air quality such as cooking,
showering or opening a window.

The Matrix Profile is a technique that analyzes temporal patterns rather than in-
dividual values and can be used to find both unique and repeating patterns. It works
by sliding a window of a predefined size over the incoming series and calculating the
distance to the best matching window in previous data. High distances indicate unique
patterns (i.e. discords) and low distances indicate repeating patterns (i.e. motifs).

As measurements enter the component, they are subsampled to 1 minute intervals
and passed to a Matrix Profile instance specific for the originating device and metric
pair. To ensure each Matrix Profile has reference data, historic data is queried from
Obelisk when first encountering a new pair. If no historic data is available (as would
be the case with a newly connected device), data is buffered until a predefined number
of days is available after which a complete Matrix Profile is calculated. The resulting
distances are normalized [54] and checked against a predefined anomaly threshold.
Anomalies are not triggered right away when the threshold is passed, but the next
distances are also considered and are used to find a local maximum. Once a local
maximum is found, it is reported and a cooldown period is initiated, which avoids
new reports for the same underlying pattern. This approach avoids multiple anomalies
being reported by the same underlying behavior.

The committing of progress to Kafka was somewhat complicated through the use
of windows and delayed reporting: an index could only be committed if all preceding
data was no longer used for a Matrix Profile window or in a delayed anomaly report.
Horizontal scalability is straightforward and only limited by the number of partitions
used in the measurements Kafka topic.

In Dyversify, we evaluated this technique for the CO2, temperature and relative
humidity measurements, as we expected these signals to be periodic in nature. Near
the end of the project, we dropped the temperature signal as this signal produced the
least interesting results. We configured eachMatrix Profile to track one year of data (to
have representative data for all seasons), used a window length of 1 hour (humidity)
or 8 hours (CO2), and utilised a method to reduce the adverse effects of noise [54].
Furthermore, we only allowed pattern comparisons for the humidity signal if the stan-
dard deviation ratio between both windows was similar (ratio below 1.5). This was
needed to discriminate activity patterns from random noise in a period without activ-
ity. The MP-outliers component was implemented in Python using the in-house Series
Distance Matrix library [55].
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Evaluations showed theMP-outliers processes around 2000 (non-filtered)measure-
ments per minute or 1 measurement every 30ms. Since the average Healthbox gener-
ates 15 relevant measurements per minute, a single MP-outliers instance can process
up to 133 Healthboxes in real-time. Further performance gains can be gained by using
coarser subsampling, reducing the amount of reference data or by using GPU imple-
mentations of Matrix Profile [56].

6.4.6.3 Event Detection: MP-events

This component assumes that repeating patterns represent repeating system or con-
sumer behavior and uses the Matrix Profile to search for new occurrences of relevant
patterns. Relevant patterns are provided by the user interacting with the dashboard,
any labeled event will be tracked.

This and the previous component differ in how they use the Matrix Profile. The
MP-events component compares a query pattern sequence against the incoming mea-
surements, while the previous component performs a so-called self-join [35] to look
for unique patterns in the incoming measurements. The processing flow and param-
eters are similar as the previous component, except here a local minimum is used, as
we are interested in the best possible match for each query pattern.

The query patterns originate from two sources, as shown in Figure 6.1. The first
source is the Kafka event topic, where all detection events are submitted, but because
we filter on labeled events, effectively only those of the dashboard are used. Still, by
reading from the Kafka topic, rather than creating a direct link to the dashboard, we
have a loose coupling that would allow transparent changes in the future. The second
source of query patterns is the Stardog database, which is queried using SPARQL.
Where Kafka acts as the live event feed, Stardog is the historical repository. Retrieval
of historical events is needed in cases where a MP-events instance does not start pro-
cessing a stream from the start. This can occur due to recovery of a crashed instance
or due to reassignment after horizontal scaling. Horizontal scalability is achieved in
the same way as the MP-outliers component. Reading from two Kafka topics did pose
some challenges, which are discussed in Section 6.5.

As a Matrix Profile instance can only process a single measurement stream, MP-
events creates one Matrix Profile per pattern. As MP-events consumes measurements,
it forwards each measurement to all Matrix Profile instances tracking that specific
stream. This does mean this approach will have scalability issues if the number of
patterns would keep growing, though this was not a problem for Dyversify. Evalua-
tions showed that incoming measurements for a single pattern were processed in 15ms.

6.4.6.4 Event Detection: Expert-rules

This service processes the incoming measurements using expert rules that were con-
verted into semantic rules. These rules follow an if-then structure, where both parts
contain RDF triples with variables in them. Note that outputs of one rule may be used
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as input for a different rule. As semantic reasoners apply rules to collections of triples,
rather than streams, we use windowing to reason over the most recent measurements
per device/metric combination.

A semantic expert created the rules in cooperation with domain experts. As prepa-
ration, experts were asked to complete FMEA (failure mode and effects analysis [57])
and FTA (fault tree analysis [58]) documents, which were converted to semantic rules
[59]. An example rule, shown in Listing 6.4, describes the conditions for humid
weather, which is used as condition for other rules. Reasoning is done by an inter-
nal Stardog database. This database is loaded with the rules, the last 10 measurements
and any available metadata of the device. When the reasoner outputs an anomaly, it is
submitted to Kafka.

Listing 6.4: A semantic rule that expresses humid weather based on available measurements.
Note that some lines were commented out for performance reasons.
IF {

#? h1 a < h t t p : / /www.w3 . org / ns / s o s a / Obse rva t i on > .
#? h2 a < h t t p : / /www.w3 . org / ns / s o s a / Obse rva t i on > .
? h1 < h t t p : / /www.w3 . org / ns / s o s a / h a sS imp l eRe su l t > ? r1 .
? h2 < h t t p : / /www.w3 . org / ns / s o s a / h a sS imp l eRe su l t > ? r2 .
FILTER ( ? r2 −? r1 >4) .
? h1 < h t t p : / / IBCNServices . g i t h u b . i o / Fo l i o −Onto logy / F o l i o . owl#hasEpochTime > ? t 1 .
? h2 < h t t p : / / IBCNServices . g i t h u b . i o / Fo l i o −Onto logy / F o l i o . owl#hasEpochTime > ? t 2 .
FILTER ( ? t1 <? t 2 ) .
#? h1 < h t t p : / /www.w3 . org / ns / s o s a / o b s e r v e dP r op e r t y > ?o1 .
#? o1 a < h t t p : / / IBCNServices . g i t h u b . i o / d y v e r s i f y / Renson# Re l a t i v eHumid i t y > .
#? h2 < h t t p : / /www.w3 . org / ns / s o s a / o b s e r v e dP r op e r t y > ?o2 .
#? o2 a < h t t p : / / IBCNServices . g i t h u b . i o / d y v e r s i f y / Renson# Re l a t i v eHumid i t y > .

}
THEN {

?h1 < h t t p : / / IBCNSerc ices . g i t h u b . i o / d y v e r s i f y / mode l_ renson # hasWeather > " humid_weather " .
}

As the reasoner only uses static metadata and measurements coming from a single
device, this service is horizontally scalable. We deployed 3 instances of this service,
where each instance ran on a 10 CPU core node with 10 Stardog instances. Evaluations
showed that on average, a single instance processes bedroom measurements in 320ms
and bathroom measurements in 730ms. This difference in timings can be attributed
to the complexity of the applicable rules. Further details can be found in a dedicated
work [48].

6.4.7 Semantic Database: Stardog
The semantic database is needed to persist all relevant semantic data. This includes all
reported events, as well as available metadata about all Healthbox devices. Notably,
the semantic measurements are not persisted, as semantic databases are simply less
optimized for storing large collections of time series data.

Stardog was selected based on previous experiences of the semantic team as well
as practical considerations towards the project partners regarding licensing. One ad-
vantage of Stardog is that it is not just a RDF store, but also a Graph DBMS, which
facilitated data isolation for the industrial partners. Some alternatives include Virtu-
oso, which has a more complex setup, or Apache Jena, which is limited to Java.
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6.4.8 Dynamic Dashboard & Feedback

The last step in the system is a dashboard where users can visualise the various metrics
and investigate any event in detail. Dashboards need to balance between flexibility and
ease of use. Many dashboards require the user to specify and configure the widgets
of each desired visualisation. While wizards somewhat ease this task, they can still
be burdensome when the number of devices or metrics grows. Dashboards are also
a location to gather user input or feedback, since they are typically the only point of
interaction.

In Dyversify, we further developed a semantics-driven dynamic dashboard [60,
61]. This dashboard suggests suitable visualisations by reasoning over the seman-
tic descriptions of the sensors and supported visual widgets. The dynamic reasoning
component was also developed as an independent microservice, so it could be used to
suggest visualisations in other, commercial dashboards like the one from our industry
partner cumul.io, as well. When an event is selected by a user, the dashboard automat-
ically selects and configures a set of widgets that are suited to investigate it. Manual
configuration of widgets is also possible.

The dashboard is implemented as an Angular application interacting with three
other microservices: a data streamer, broker and gateway. These are written in Kafka
Streams, Django REST framework and AIOHTTP respectively. The data streamer acts
as the data access point to which dashboard widgets subscribe for the visualised met-
rics. The relevant metrics are then filtered from Kafka and forwarded to the widgets.
Note that the streamer service is foreseen to be integrated into the gateway in future
versions of the dashboard. The broker stores and provides user state (e.g., dashboard
layout), keeps track of the available metrics and houses the semantic reasoner that sug-
gests widgets based on the semantic description of visualised data. Finally, the gateway
acts as an API to retrieve the metadata and assets for dashboard widgets.

Only the dashboard microservices in our stack are exposed to the public. This way
the dashboard can provide real-time updates, while all other services of our system
remain in an isolated, secure setting.

Users can validate or remove events flagged by the system and can assign labels
to events. These interactions act as feedback for the other components of the system.
After user interaction, the label and semantic type of the event are updated and the
updated event is resubmitted to the event Kafka topic where it can be picked up again
by other services.

The dashboard is described in more detail in other works. Vanden Hautte et al.
describe the dashboard in the context of Dyversify, and include a demo movie3 in their
work [61]. Moens et al. describe the interaction between the dashboard and Obelisk
in more detail for a different, industrial IoT case [40].

3 https://www.dropbox.com/s/lhg7v5wz09ffvun/Dyversify%20demo.avi?dl=0
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6.4.9 Monitoring

Ensuring components are behaving as expected is of vital importance both during de-
velopment and in production settings. Monitoring systems give insight into the un-
derlying system to ensure this is the case. Even if different teams do not know the
specifics of components maintained by other teams, it is straightforward to interpret
metrics such as CPU usage, message throughput or Kafka messages to quickly validate
components are well behaving.

As monitoring solution, we compared the TICK stack and Prometheus. TICK
(Telegraf, InfluxDB, Chronograf and Kapacitor) is a set of open-source tools that can
be combined together or used separately to collect, store, visualise andmanipulate time
series data. It is developed by InfluxData, mostly known for its time series database
InfluxDB. The second candidate, Prometheus is fully open-source monitoring solu-
tion inspired by Google Borg Monitor [62]. It was initially developed by SoundCloud
and later donated to the Cloud Native Computing Foundation which also houses Ku-
bernetes, fluentd, Helm, Envoy and others. Each Prometheus server is standalone,
ensuring correct functioning of Prometheus even when other parts of the infrastruc-
ture are broken. While both monitoring systems have the same capabilities, we chose
Prometheus as monitoring solution because it collects metrics in a pull-based manner,
has a more streamlined data store, has a less verbose query language and found it easier
to configure for small setups.

Monitoring solutions such as Prometheus collect metrics which can be broadly
divided into three categories: servicemetrics (e.g. input or error rate), resourcemetrics
(e.g. CPU usage or network I/O) and events (e.g. alerts or configuration changes).
Some metrics like cache hits or database locks cannot be put in any of these categories,
but may still prove to be useful in representing the operability of the system. Existing
methodologies can prove good starting grounds for deciding which metrics to collect.
The USE-method [63] is a system-agnostic methodology that focuses on the resource
utilisation, saturation and errors. Another methodology comes from the Google Site-
Reliability Engineering (SRE) team, which formulated four golden signals: latency,
traffic, errors and saturation [62]. Finally, the RED-method (rate, errors, duration) was
created by Tom Wilkie, a former Google SRE employee, and focuses on microservice
monitoring.

All of the metrics above were made available in a Grafana dashboard. Still, we
found the Kafka consumer lag and latest Kafka messages the most useful metrics dur-
ing service development. We also experimented with a fully automatic rule-based scal-
ing mechanism for the microservices, based on the number of incoming messages, the
number of consumed messages, the average consumer lag and the derivation thereof.
This approach proved successful, but it took some time before the system reached a sta-
ble state after rescaling, so specific configuration for every use case would be required
in order to be truly efficient.
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6.5 Lessons Learned

After this overview of the architecture of the Dyversify stack, we now discuss lessons
we learned while developing and testing our stack.

6.5.1 Scalability Requirements

Scalability is achieved by up- or downscaling the instances of components based on
the workload, and having each instance process a subset of the incoming data. When
these components and their data flow adhere to certain guidelines, the complexity can
be greatly reduced.

First, each instance should be able to work independently, so there is no need for
synchronization between all instances. Ideally, the input data also forms disjoint logi-
cal groups. In our proof-of-concept, we wanted to perform event detection across all
ventilated rooms per building, so the data had to be partitioned in such a way that all
streams originating from a single building were assigned to the same Kafka partition.

Here, we encountered an issue for the MP-events component which also uses user
feedback. The event topic contains the patterns that need to be tracked, while the mea-
surement topic contains the actual time series being tested. The issue originates from
the need to process two Kafka topics at the same time (with the event topic having
priority), which is not supported by Kafka. We solved this by interweaving the reads
from both topics, though this introduces a timing-dependent non-deterministic behav-
ior which might be undesired for some use cases.

A second requirement for scalability is that each instance should have a short
startup and perform a clean and fast shutdown when it receives a termination signal.
Here, we experienced many problems with the MP-outliers service, which determines
anomalies by referencing one year of historic data. Because of the way different sen-
sors are interwoven on the measurement topic, all relevant historic data will be loaded
before the detector achieves normal operating speed. As fetching historic data could
take several minutes for a single sensor, this resulted in an effective startup time of 30
to 60 minutes. In cases where data fetching took exceptionally long, Kafka marked
the unresponsive consumer as a crashed instance and removed it. Unfortunately, this
caused a re-initialization cascade as all data partitions were reassigned to the remain-
ing nodes, effectively re-triggering the issue. We solved the cascade problem by using
manual partition assignment, and starting the instances one at a time to avoid all in-
stances querying Obelisk at the same moment. The long data fetches could be solved
by caching the historic data sets on a shared drive, avoiding the need for lengthy data
retrieval queries.

6.5.2 Setting up a Complex Microservice-based Backend

There is a need for a number of essential enablers during multi-team collaborative
R&D on complex microservice-based systems such as the one described here. For
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one, in-depth monitoring of individual service endpoints in terms of e.g. load, re-
source consumption and response times allowed us to rapidly gain insights in the dy-
namics of the service backend. This aided in identifying erroneous or misbehaving
service instances e.g. due to overconsumption of memory. In Dyversify, we chose to
employ Prometheus as a monitoring and alerting toolkit, monitoring all Dockerised
services deployed on Kubernetes, with metrics visualised on Grafana dashboards and
push-based developer alerting in case a back-end issue was detected. Service mesh
technologies (e.g. Istio) can provide additional monitoring, specifically network met-
rics, by adding sidecars or proxies to each service that is deployed. However, due to
the constraints of our architecture, i.e. high speed IoT data, we opted not to implement
this technology due to the impact on performance.

A second important lesson learned was that when multiple development teams de-
ploy services on the same container orchestration infrastructure (e.g. Kubernetes), it
is important to enforce infrastructural bulkheads (fixed resource constraints per team
supplying services). This follows the embrace failure principle, as deployment of an
erroneous service version (which can and will happen) cannot escape the confines of
the bulkhead and therefore has a more limited impact on other well-behaving service
instances.

Thirdly, as data in our architecture was sent over Kafka, it became clear that input
validation of posted messages should be mandatory. To give an example: faulty sen-
sors were at times emitting NaN (Not a Number) as sensor data value. As consuming
services expected these values to be of floating point type, these messages remained
unconsumed and cluttered the different topics. Dedicated alerting or data offloading
strategies for data that does not adhere to the expected input should therefore be in-
stalled.

6.5.3 Early Testing for Library Limitations

Any high-level software component relies on libraries made by third parties for certain
functionality. The availability or maturity of these libraries may differ between pro-
gramming languages and should be considered during the design of any component.
Unfortunately, desired functionality may not be fully known in advance, or limitations
of certain libraries may not be apparent through documentation.

For us, the choice of programming language was mainly based on the expertise of
each team, but we did not foresee problems related to libraries. Still, two library re-
lated problems arose during the course of the project. First, we encountered problems
with the Python Kafka client implementation. One issue entailed internal timeouts
leading to costly consumer rebalances and were due to the inner workings of the client
library. Later versions of the library fixed this issue, months after we reported the
issue. Another issue was missing functionality to avoid the previously mentioned ini-
tialization cascade, which is available in the Java Kafka client, but not in the Python
client. Both problems required workarounds which cost one to two weeks of work to
get right. The second library problem was related to the RMLStreamer, and was due to
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an undocumented interaction between Kafka and Apache Flink (used internally by the
RMLStreamer). Here, we learned the hard way that Flink does not follow the consumer
group semantics of Kafka. This caused input partitions to be processed zero or multi-
ple times, leading to both duplicate and missing semantic messages. Tests had missed
this problem because the testing environment only used one data partition, where the
production environment used multiple. This highlights the need to test early during
development and to match the testing and production environment as best as possible.

6.5.4 Semantic Microservice Communication

The independence of components in microservice architectures imposes a need for
well defined message formats. Once established, changes may affect multiple other
components and should be avoided. A known solution is for each microservice to
provide versioned, well-defined contracts to clients. New versions incorporate changes
and are used in parallel with older, deprecated contracts during a grace period.

Our stack uses two types of messages in the Kafka topics: measurements and
events. Both types have a JSON and semantic model, and a mapping is possible from
one format to the other. The measurement format is straightforward, as it is only out-
putted by the ingest system. The event format consists of a single specification with
optional fields that are filled depending on the producer.

While semantics are well suited for streamlining communication from different
sources, we experienced no benefit from using semantic messages over plain JSON
for microservice communication. As mentioned in the introduction, semantic graphs
can be serialized in multiple ways. Even in the JSON-LD serialization, there are mul-
tiple formats to represent the same data. This means developers either have to use a
technique called JSON-LD framing to transform it to a desired JSON structure, or load
the data into a triple store so it can be queried using SPARQL. While framing and
SPARQL are well supported, they are unfamiliar to developers and introduce an extra
level of complexity. Because the microservice environment is isolated and the format
of messages is well defined, the streamlining value of semantics is somewhat lost and
we are left with a complex data container.

Another aspect to take into account is the verbosity of semantic messages. Because
URIs are used to identify concepts and relations, and values should be specified ex-
plicitly (i.e. they should not be extracted from URIs), semantic messages are typically
longer than a pure JSON representation. Methods exist to reduce verbosity, such as
the use of a context which maps (long) URIs to short, simple string keys, as is done in
Listing 6.2 and Listing 6.5. However, this has no effect for short messages such as mea-
surements or events because the mapping context has to be included in the message as
well. The JSON-LD context can also be included as an external link in a HTTP header.
Conceptually, this requires clients to validate the context for every message they pro-
cess, incurring a processing overhead instead. For us, semantic messages were 1.5 to
6 times larger than the JSON messages.
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6.6 Conclusion

In this chapter we discussed the architecture designed and validated within the Dyver-
sify project to create a working, scalable and resilient proof-of-concept software stack
that combinesmachine learning and semantic technologies. This stack is used for event
detection on time series data stemming from internet-enabled ventilation devices. The
stack was developed in cooperation with three industry partners, and validated using
real data from train bogie monitoring and ventilation monitoring systems, though this
chapter only discusses the former.

We explain how data ingest, storage, transfer, processing, visualisation and captur-
ing of user feedback are performed by interacting, independent microservices. Event
and anomaly detection is performed bymultiple machine learning and semantic expert-
based components, whose output is unified to a semantic format. A dashboard uses
semantic sensor descriptions to dynamically generate visualisations for events with
only limited human intervention. We also discuss our systemmonitoring approach and
considerations to guarantee scalability. We believe this work can provide a valuable
starting reference for parties considering IoT anomaly or event detection combining
both data-driven and semantic technologies, as well as looking at full-stack design.

Research continues on all techniques mentioned in this chapter, as well as their in-
tegration. Anomaly detection methods for IoT still suffer from the varying deployment
situations and uncertainty on what should be considered anomalous. Incorporating
the context of sensors into anomaly detection might prove useful. Monitoring of dis-
tributed systems faces similar challenges, since the normal system behavior changes
as services are added or replaced on the network. Finally, more fine grained models
might also be useful for recommending anomaly visualisations, since users will have
different focuses based on their company role or expertise.

Appendix: Semantic event

Listing 6.5: JSON-LD representation of the event from Listing 6.3.
{

"@graph " : [
{

"@id" : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son / t h i n g s /
HEALTHBOX3.171030 SD0005 . 2 / m e t r i c s / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n%3A%3Anumber " ,

" i sObse rvedBy " : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son / t h i n g s /
HEALTHBOX3.171030 SD0005 . 2 "

} , {
"@id" : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son / t h i n g s /

HEALTHBOX3.171030 SD0005 . 2 / m e t r i c s / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n%3A%3Anumber /
o b s e r v a t i o n s /1532217600000" ,

" r e s u l t T ime " : "1532217600000"
} , {

"@id" : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son / t h i n g s /
HEALTHBOX3.171030 SD0005 . 2 / m e t r i c s / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n%3A%3Anumber /
o b s e r v a t i o n s /1532217601000" ,

" r e s u l t T ime " : "1532217601000"
} , {

"@id" : " h t t p : / / example . com / p rocedu r e_bn /2019 −11 −25T15%3A33%3A04.333950%2B00%3A00" ,
" l a b e l " : " M a t r i x P r o f i l e "
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} , {
"@id" : " h t t p : / / example . com / s t im u l u s /HEALTHBOX3.171030 SD0005 . 2 / s e n s o r . i n doo r . CO2 .

c o n c e n t r a t i o n%3A%3Anumber /1532217600000/1532217601000" ,
"@type " : " h t t p : / /www.w3 . org / ns / s sn / S t imu l u s " ,
" f r omObse r v a t i on " : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r e n son /

t h i n g s /HEALTHBOX3.171030 SD0005 . 2 / m e t r i c s / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n%3A%3
Anumber / o b s e r v a t i o n s /1532217600000" ,

" o b s e r v e dP r o p e r t y " : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son /
t h i n g s /HEALTHBOX3.171030 SD0005 . 2 / m e t r i c s / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n%3A%3
Anumber " ,

" t oOb s e r v a t i o n " : " h t t p : / / d y v e r s i f y − s t a c k . i d l a b . be / s cope s / i c on . d y v e r s i f y . r en son / t h i n g s
/HEALTHBOX3.171030 SD0005 . 2 / m e t r i c s / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n%3A%3Anumber /
o b s e r v a t i o n s /1532217601000"

} , {
"@id" : " h t t p s : / / g i t l a b . i l a b t . imec . be / d y v e r s i f y / d y v e r s i f y −ml−anomaly − d e t e c t o r /KPD/

HEALTHBOX3.171030 SD0005 . 2 / s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n : : number
/1532217600000/1532217601000" ,

"@type " : [
" h t t p : / / IBCNServices . g i t h u b . i o / Fo l i o −Onto logy / F o l i o . owl#Anomaly " ,
" h t t p : / / IBCNServices . g i t h u b . i o / Fo l i o −Onto logy / F o l i o . owl#KnownPatternAnomaly "

] ,
" d e s c r i p t i o n " : " P a t t e r n s i m i l a r t o Window opened " ,
" r e s u l t T ime " : "2019−11−25T15 : 33 : 04.333950+00 : 00" ,
" u s edP ro c edu r e " : " h t t p s : / / g i t l a b . i l a b t . imec . be / d y v e r s i f y / d y v e r s i f y −ml−anomaly −

d e t e c t o r / ns / known− p a t t e r n − d e t e c t o r / 1 " ,
" wasOr ig ina t edBy " : " h t t p : / / example . com / s t im u l u s /HEALTHBOX3.171030 SD0005 . 2 / s e n s o r .

i n doo r . CO2 . c o n c e n t r a t i o n%3A%3Anumber /1532217600000/1532217601000" ,
" upda t e " : " f a l s e " ,
" m e t r i c I d " : " s e n s o r . i n doo r . CO2 . c o n c e n t r a t i o n : : number " ,
" t h i n g I d " : "HEALTHBOX3.171030 SD0005 . 2 "

} , {
"@id" : " h t t p s : / / g i t l a b . i l a b t . imec . be / d y v e r s i f y / d y v e r s i f y −ml−anomaly − d e t e c t o r / ns / known

− p a t t e r n − d e t e c t o r / 1 " ,
"@type " : " h t t p : / /www.w3 . org / ns / s o s a / P r o c edu r e " ,
" s p e c i a l i z a t i o n O f " : " h t t p : / / example . com / p rocedu r e_bn /2019 −11 −25T15%3A33%3A04.333950%2

B00%3A00"
}

] ,
" @context " : {

" m e t r i c I d " : { "@id" : " h t t p s : / / i d l a b − i o t . t e ngu . i o / a p i / v1 / v o c abu l a r y / m e t r i c I d " } ,
" t h i n g I d " : { "@id" : " h t t p s : / / i d l a b − i o t . t e ngu . i o / a p i / v1 / v o c abu l a r y / t h i n g I d " } ,
" l a b e l " : { "@id" : " h t t p : / /www.w3 . org / 2 0 0 0 / 0 1 / rd f −schema# l a b e l " } ,
" d e s c r i p t i o n " : { "@id" : " h t t p : / / p u r l . o rg / dc / t e rms / d e s c r i p t i o n " } ,
" upda t e " : { "@id" : " h t t p s : / / i d l a b − i o t . t e ngu . i o / a p i / v1 / boo l e an s / upda t e " } ,
" r e s u l t T ime " : {

"@id" : " h t t p : / /www.w3 . org / ns / s o s a / r e s u l t T ime " ,
"@type " : " h t t p : / /www.w3 . org / 2 0 0 1 /XMLSchema# dateTime "

} , " u s edP ro c edu r e " : {
"@id" : " h t t p : / /www.w3 . org / ns / s o s a / u s edP ro c edu r e " ,
"@type " : "@id"

} , " wasOr ig ina t edBy " : {
"@id" : " h t t p : / /www.w3 . org / ns / s sn / wasOr ig ina t edBy " ,
"@type " : "@id"

} , " i sObse rvedBy " : {
"@id" : " h t t p : / /www.w3 . org / ns / s o s a / i sObse rvedBy " ,
"@type " : "@id"

} , " o b s e r v e dP r o p e r t y " : {
"@id" : " h t t p : / / IBCNServices . g i t h u b . i o / Fo l i o −Onto logy / F o l i o . owl# o b s e r v e dP r o p e r t y " ,
"@type " : "@id"

} , " f r omObse r v a t i on " : {
"@id" : " h t t p : / / IBCNServices . g i t h u b . i o / Fo l i o −Onto logy / F o l i o . owl# f r omObse r v a t i on " ,
"@type " : "@id"

} , " t oOb s e r v a t i o n " : {
"@id" : " h t t p : / / IBCNServices . g i t h u b . i o / Fo l i o −Onto logy / F o l i o . owl# t oOb s e r v a t i o n " ,
"@type " : "@id"

} , " s p e c i a l i z a t i o n O f " : {
"@id" : " h t t p : / /www.w3 . org / ns / prov # s p e c i a l i z a t i o n O f " ,
"@type " : "@id"

}
}

}
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Chapter 7

Conclusion

This chapter summarizes the findings of this dissertation and discusses possibilities
for future work.

7.1 Insight Mining

Ever more companies are starting to acknowledge the value of collecting and analyz-
ing data, inspired by the many success stories of early adopters. Indeed, as society
becomes ever more digitized, companies that delay their adoption of data analytics
in their business plan will be at a disadvantage against competitors that are able to
extract insights from data. Where the past decade has seen much focus on big data,
i.e. extremely large quantities of data, more recent innovations in sensors and network
connectivity have opened the possibility of continuous monitoring for services and
machines, and the IoT as a whole. The resulting time series captured this way open a
whole new dimension in which data analytics can take place.

Traditional analytics techniques can still be applied to time series by compressing
series using statistical operations or by treating preceding time windows as indepen-
dent features. However, the temporal (or spatial) nature of time series allows us to
look for patterns within time windows as well, i.e. subsequence patterns. In the past
years, several methods for insight mining on time series have been proposed, includ-
ing visualization, segmentation or rule mining. Many of these techniques are based on
the retrieval of repeating subsequences from time series. Two important parameters
here are the proper subsequence length to consider, as well as the proper distance mea-
sure, both are highly dependant of the foreseen use case. Other considerations, also
applicable to time series analytics in general, include computational complexity and
the incorporation of domain knowledge.

This dissertation introduced several new techniques to extract insights from time
series. In Chapter 2, we demonstrated the use of a hybrid model to detect anomalous
welds in a steel production line. The hybrid model combines a classical data-driven ap-
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proach with domain knowledge related to the welding procedure. The model is trained
using gradient descent and hereby learns the previously unknown properties of the
various steel types and the welding machine. Not only is this approach more credible
and trustworthy for the engineers, the model-learned parameters can form a basis for
further analytics. Chapter 3 introduced the contextual matrix profile as a new pattern-
based analytics technique. It can be used to capture non-periodic repetitions in series
and has direct applications in visualization or contextual anomaly detection, but may
also serve as a type of feature generator. Finally, in Chapter 5 we presented a new
and improved techniques for finding patterns that are repeated multiple times in one
or more time series, i.e. consensus and common motifs. These motifs can easily be
retrieved using the radius profile, a new series derived from the original series. See-
ing how the matrix profile inspired many techniques by facilitating motif retrieval, we
hope the radius profile may similarly prove as a base for further analytics techniques.

Besides new techniques, this dissertation also addressed some of the challenges
facing existing techniques. As mentioned before, the hybrid model in Chapter 2 ef-
fectively integrates expert knowledge into the hybrid model. The knowledge was inte-
grated in the form of physical laws related to the welding process. The series distance
framework, introduced in Chapter 3, recognizes the fact that different use cases may
need different definitions of similarity when using pattern-based techniques, and aims
to make experimentation easier. In this framework, users can combine various distance
measures with various analytical techniques in an easy and efficient way. Following the
dogfooding principle, we used our open source implementation of this framework as
the foundation for all techniques described in this dissertation. Where Chapter 3 eased
the use of more distance measures in the broad way, Chapter 4 focused on extending
the applicability of the most used distance measure available, i.e. the z-normalized
Euclidean distance. This chapter shed light on various characteristics of this distance
measure, such as its link to the Pearson correlation and suggested a way to normalize
distances irrespective of subsequence length. Still, the main contribution of this chap-
ter was a way to bring this distance measure more in line with the human intuition of
similarity when dealing with noisy data that lacks distinctive patterns.

7.2 Anomaly Detection

Anomaly detection, or the more generic event detection, is one specific aspect of data
analytics that many companies have a direct interest in. It is an interesting subtopic
because it has many applications with obvious return on investments, such as product
quality assurance, safety or automation. Though research has removed many hurdles
related to anomaly detection, many of the remaining challenges are in fact related to
real-world constraints. Perhaps one of themost frustrating challenge for any data scien-
tist is the lack of labeled data that can be used for training and evaluation. One solution
that is demonstrated in Chapter 4 is to use unsupervised methods to look for possible
anomalies and present these to a user, ordered from most to least suspicious, a pro-
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cess that continues until all suspicions are listed or until the user runs out of time. An
extension of this approach is to jump-start labeling by combining rule-based anomaly
detection using expert domain knowledge with unsupervised methods, as is explained
in Chapter 6. As the unsupervised methods detect suspected anomalies, they are pre-
sented to the user who can verify or disregard them, after which this user feedback
is fed back into the event detection methods. Such a system removes the need of big
and cumbersome labeling campaigns upfront and has the potential to become more
accurate as users interact more with it, though managing these evolving algorithms is
a challenge on its own. A different challenge related to anomaly detection is the in-
corporation of context information, therefore and finally, in Chapter 3, the contextual
matrix profile was introduced. This technique lets users define a set of temporal con-
texts where the data should display similar behavior, based on this it is straightforward
to find anomalous regions in a series.

7.3 Future Work

This dissertation addressed several challenges related to analytics and anomaly detec-
tion but should be seen as a single step on a long and never ending path of improvement.
Without any doubt, further improvements, specializations and new techniques will be
discovered, some perhaps for use cases that are currently not even under consideration.
While claims about the future inherently come with a degree of uncertainty, we discuss
some research directions that seem promising.

Dynamic & Interactive Anomaly Reporting Systems

While a feedback loop between users and anomaly detection systems has great poten-
tial, it also comes with a series of new challenges. Similar to how anomalies can be di-
verse, so can users. Users often have different backgrounds and interests and may look
for other details when examining anomalies. This means that a system that presents
anomalies in a static way will not be appreciated by all users. Dynamic dashboards,
as introduced in Chapter 6, that take anomaly and user information into account for
automatic widget selection can be useful in this regard. Still, the task of incorporating
user and anomaly metadata is not straightforward because of a lack of reference data.
Both the number of users interacting with the system and the number of visualized
anomalies will be small when compared to datasets used for traditional machine learn-
ing. When dividing users into different groups, the number of available interactions to
learn from decreases even more. Since the dynamic dashboard will have to learn user
preferences from this small amount of data, it may be worth to consider generalized
models that consider all interaction data, and smaller, personalized models that are de-
rived thereof. A similar system is used to classify priority emails in Google Mail, be
it on a larger scale [1].
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Pattern-based Incremental Event Detection

Pattern-based event detection systems function by scanning incoming data for the pres-
ence of a pattern that indicates a particular event. As more event instances are found,
user feedback may help refine the detection criteria. However, user feedback may not
always be as helpful in practice. Users may mislabel certain prediction by accident
or change their labeling methodology as a result of new insights. Alternatively, dis-
tinct events may be grouped together by a user under a single label. These types of
scenarios are common for anomaly detection datasets and are tackled by the data sci-
entist. However, in systems that allow more interactivity between models and users
(who are responsible for labeling), an interactive process to clear out inconsistencies
may be more fruitful. A likely outcome is that the detection system is composed of
multiple models that focus on distinct patterns. Since pattern-based approaches utilize
a high number of computations, the question can be asked whether we can optimize
multi-pattern search for a single series?

Super-speed Series Distance Matrix

The series distance matrix framework is intended to maximize the ease of experimen-
tation, and as such, is intended for academic researchers. In contrast, the main con-
cern of company data scientists is scale and speed, as apparent in company driven
implementations [2, 3]. These implementations rely on distributed or GPU-enabled
workflows, but implement independent implementations that can utilize only a single
distance measure. It would be interesting to investigate to what degree the flexibility of
the series distance matrix framework is compatible with the performance boosts avail-
able through GPU and distributed workflows. Additional computational optimizations
may be possible for scenarios where multiple analytics techniques are combined (i.e.
multiple SDM-generators or SDM-consumers) by sharing common computational op-
erations. For example, both the Euclidean and z-normalized Euclidean distance can be
efficiently calculated using dot products, so this calculation could be shared when both
measures are needed. One particularly interesting route to explore here would be the
exploitation of computation graphs, as used in modern machine learning frameworks
like TensorFlow.

Insight Mining for Non-discrete Contexts

The contextual matrix profile allows a user to define discrete temporal contexts that
can be used to find mismatches in expected behavior. Unfortunately, contexts are more
complex in many application domains and representing them with distinct contexts
would lose information about context similarity. Consider for example different oper-
ators manning a machine where various sensors monitor machine characteristics. The
operator could be an important context factor in the resulting measurements. While
it would be easy to represent each operator as distinct, it might be more interesting to



consider how similar some operators are. For example, two operators that received the
same training will be more similar to each other compared to two operators that have
the same age. Since contexts have no predefined form, property or knowledge graphs
may be a good way to represent them. While the utilization of knowledge graphs as in-
put for machine learning has become a topic of research [4], the question remains how
to properly define context similarity and how to incorporate this into insight mining
methods.
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