Dieter De Paepe

Traditional Data

Rows are records

Columns are features

Can be visualized

Time Series

Rows are records

Columns are features

Can be visualized

	z acc	acc	у	c	x ac	time	
	-0.104062	132	13.9	97	0.82943	2278.38	227000
and the second s	-0.730616	607	14.0)4	0.46850	2278.39	227001
	-1.907150	715	15.0	53	-0.17295	2278.40	227002
	-3.194480	580	16.7	8	-0.39678	2278.41	227003
	-3.432090	<mark>44</mark> 4	16.6	6	-0.70886	2278.42	227004
					5		
	-2.054700	876	13.1	0	-0.10628	2338.34	232996
surements while walking	Meas				-0.24809	2338.35	232997
The second	In or tel.		10		0.08824	2338.36	232998
			- 16	5)	0.82391	2338.37	232999
			14	-sm)	1.50292	2338.38	233000
			12	ation			
	n i nullin i t		10	celer			
		- 11	5 8	al Ac			
		-	5 6	/ertic			
Allowathathalling hardealagter (, , ,),		-	4	[
	P11 - 1	Ļ	2				
20 30 40 5	10	0					

60

Time Series

Show change through time

Often periodic or repetitive

Capture behavior

cc yacc zacc	z acc	y acc	CC	x ac	time	
37 13.9132 -0.104062	-0.104062	13.9132	37	0.82943	2278.38	227000
04 14.0607 -0.730616	-0.730616	14.0607	04	0.46850	2278.39	227001
53 15.0715 -1.907150	-1.907150	15.0715	53	-0.17295	2278.40	227002
88 16.7580 -3.194480	-3.194480	16.7580	38	-0.39678	2278.41	227003
66 16.6444 -3.432090	-3. <mark>4</mark> 32090	16.64 <mark>4</mark> 4	66	-0.70886	2278.42	227004
				ŝ		
80 13.1876 -2.054700	-2.054700	13.1 <mark>87</mark> 6	30	-0.10628	2338.34	232996
g Measurements while walki	м			-0.24809	2338.35	232997
4 18		10		0.08824	2338.36	232998
1 C 16-1		16 -	- 	0.82391	2338.37	232999
		14 -	(ms ⁻	1.50292	2338.38	233000
		12 -	ation			
	1/L/	10 -	elera			
	1111	8 -	Acc			
		6 -	rtica			
	V V		Ş			
41 V V V V V V	VV	4				

5

Time Series are everywhere

Time series are new valuable

Time series are new valuable

Time series are new valuable

Insight mining omnipresent new valuable

Value

Icons by <u>Stefania Servidio</u> and <u>WPZOOM</u> (CC BY 3.0)

ST

Visualizing content

PVC image from wikimedia by James Heilman, MD - CC BY-SA 3.0

Summarizing content

Detecting evolving patterns

Detecting changepoints

Detecting anomalies

Anomaly detection

... for exploration "We didn't expect that!"

... for prevention "Check your engine!"

... for reaction "Call a doctor!"

Anomalies are vague

Highly subjective

E.g. yearly fire drill

Context dependent

E.g. weekdays versus holidays

Instantaneous or long-term

E.g. noise versus different behavior

Introduction **Matrix Profile Contextual Matrix Profile Noise Elimination Radius Profile SDM-Framework** Conclusion

Matrix Profile | Example

Matrix Profile | Example

Matrix Profile | Example

Matrix Profile | Example

Matrix Profile | Example

Matrix Profile | Similarities

Given two sequences, define a distance measure

Manhattan distance

$$D_M(X,Y) = \sum_i |x_i - y_i|$$

Euclidean distance

$$D_E(X,Y) = \sqrt{\sum_i (x_i - y_i)^2}$$

Z-normalized Euclidean distance

$$D_{ZE}(X,Y) = D_E\left(\frac{X-\mu_X}{\sigma_X}, \frac{Y-\mu_Y}{\sigma_Y}\right)$$

Matrix Profile | Z-normalized Euclidean Distance

Most used because it compares shape

Euclidean Distance

Z-Normalized Euclidean Distance

Distance matrix visualizes all distances

No clear pattern results in neutral distance

No clear pattern results in neutral distance

Matching pattern gives low distance

No clear pattern results in neutral distance

Matching pattern gives low distance

Lone pattern results in high distance

Matrix Profile | Insights

Visualization

Summarization

Finding evolving patterns

Segmentation

Anomaly detection

13

Normal Beats

250 week

PVC Beats

TypeA

PVC Beats Type B

Positive

2014

Periodicity

Discover & visualize

Anomalies

Periodicity

Noise in signals

Affects perceived shape

Impedes insights

Periodicity

Noise in signals

Repetition

Across time series

Within single time series

Periodicity

Noise in signals

Repetition

Integration

Shared functionality

Single workflow

Introduction **Matrix Profile Contextual Matrix Profile Noise Elimination Radius Profile SDM-Framework** Conclusion

Integration

Introduction **Matrix Profile Periodicity Contextual Matrix Profile Noise Noise Elimination Repetition Radius Profile SDM-Framework** Conclusion

Contextual Matrix Profile | Example

Dataset of taxi passengers in New York

Contextual MP | Calculation

Distance matrix visualizes all distances

Contextual MP | Calculation

Distance matrix visualizes all distances

Find best match in region

Contextual MP | Calculation

Distance matrix visualizes all distances

Find best match in region

Calculate distances as usual

4K72

- 8

6

Similar

- 4

-2

Dissimilar

6

Similar

Weekday vs Weekend

Dissimilar

- 8

6

- 4

Similar

Weekday vs Weekend

Christmas - New Year

Dissimilar

8

6

Similar

Weekday vs Weekend **Christmas - New Year** Labor Day & Thanksgiving

Dissimila

6

Similar

Christmas - New Year Labor Day & Thanksgiving Blizzard

CMP (clipped values)

Dissimilar

Similar

Weekday vs Weekend Christmas - New Year Labor Day & Thanksgiving Blizzard Start of school

Matrix Profile versus Contextual MP

Matrix Profile finds distinct patterns

E.g. blizzard, holidays, transition wintertime

Matrix Profile versus Contextual MP

Matrix Profile finds distinct patterns

E.g. blizzard, holidays, transition wintertime

Contextual MP additionally finds:

periodicity: weekday/weekend, school period

deviating patterns: Christmas period, additional holidays

Integration

Introduction **Matrix Profile Periodicity Contextual Matrix Profile Noise** Noise Elimination **Repetition Radius Profile SDM-Framework** Conclusion

Noise | Z-normalized Euclidean Distance

Most used because it compares shape

Euclidean Distance

Z-Normalized Euclidean Distance

Noise | Z-normalized Euclidean Distance

In rare cases, noise defines shape of the data

Noise is pretty common

Most sensors experience noise

Systems behavior is similar to noise

Noise | Examples with noise elimination

Visualization on activity dataset

Noise | Approach

Analytically estimate the effect of noise & deduct this estimate

Noise | Examples with noise elimination

Visualization on activity dataset

Noise | Examples with noise elimination

Anomaly detection on system monitoring

Noise | Examples with noise elimination

More anomalies found in less time

Noise | Examples with noise elimination

Segmentation on activity dataset

Introduction Matrix Profile **Contextual Matrix Profile Noise Noise Elimination Radius Profile SDM-Framework** Conclusion

Radius Profile | Use Case

Radius Profile | Use Case

Radius Profile | Use Case

Radius Profile | Calculation

Distance matrix visualizes all distances

Radius Profile | Example

Radius Profile | Calculation

Distance matrix visualizes all distances

Introduction **Matrix Profile Periodicity Contextual Matrix Profile Noise Noise Elimination Repetition** Radius Profile Integration SDM-Framework Conclusion

Distance matrix as a foundation

Matrix Profile

Contextual Matrix Profile

Radius Profile

Matrix Profile | Similarities

Given two sequences, define a distance measure

Manhattan distance

$$D_M(X,Y) = \sum_i |x_i - y_i|$$

Euclidean distance

$$D_E(X,Y) = \sqrt{\sum_i (x_i - y_i)^2}$$

Z-normalized Euclidean distance

$$D_{ZE}(X,Y) = D_E\left(\frac{X-\mu_X}{\sigma_X}, \frac{Y-\mu_Y}{\sigma_Y}\right)$$

Series Distance Matrix framework

Series Distance Matrix framework

Series Distance Matrix framework

Available online

https://github.com/predict-idlab/seriesdistancematrix

Integration

Introduction Matrix Profile **Periodicity Contextual Matrix Profile Noise Noise Elimination Repetition Radius Profile SDM-Framework** Conclusion

250

300

20

10 5

20

36

n

Insight mining in time series data with applications for anomaly detection

Dieter De Paepe

Questions