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Abstract—Time series analysis is becoming more
popular in both research and industry. One recent
innovation is the Ostinato algorithm, which finds the
best preserved patterns that are repeated in a collection
of series, i.e. consensus motifs and corresponding radii.
However, Ostinato only works as a batch algorithm, can
only find the top-k patterns, only finds patterns that
are repeated in multiple series and has a runtime that
depends on the input series and setup parameters. To
tackle these limitations, we present two algorithms in
this paper that can answer broader questions. First, we
created an anytime version of Ostinato, called Anytime
Ostinato, that finds the exact consensus radius for each
subsequence, i.e. the radius profile, or can estimate
these radii in a fraction of the time. Second, we designed
a batch algorithm, called Single Series Ostinato, that
finds the radius profile for a single series allowing us
to detect repeating patterns in a single series, which is
not possible for Ostinato. In this paper we explain both
algorithms and apply them to the REFIT and PAMAP2
datasets respectively.

Index Terms—time series analysis, motif discovery,
consensus motif, common motif, matrix profile, radius
profile

I. Introduction

In the relatively new time series analysis domain, several
topics are being researched today. These include broad
topics like classification or anomaly detection, but also
specialized techniques such as discord or motif discovery,
that can act as building blocks for other techniques.

Whereas many publications deal with finding the best
matching subsequence (motif discovery) in time series,
only one (recent) publication tackles finding the most
similar subsequence in a collection of series, the so called
consensus motif. Specifically, given a collection of series
and a subsequence length, the Ostinato [1] algorithm finds
the subsequence s and corresponding minimal distance d
(the radius), so that for each series the distance from s to
the best matching subsequence of that series is d or less.
A straightforward variant of Ostinato allows us to find the
top-k consensus motifs instead of only the top-1.

This research was partly funded by the imec.icon project PRO-
TEGO, which is co-financed by imec and VLAIO.

However, the Ostinato algorithm has two important
restrictions. First of all, it assumes a good match is to
be found in every series. If this is not the case, the
algorithm will take a substantial longer time and may
produce unintuitive results. A variant that drops this
assumption exists but requires insight in the data and a
longer runtime. Second, Ostinato assumes we only care
about the single best match in every series. This means
that multiple occurrences of a pattern within a single series
are disregarded. As a result, we cannot use Ostinato to find
the most common pattern in a (collection of) series where
we do not know in advance where the pattern occurs.

To solve these shortcomings we present two innovations.
First, we present an anytime version of the Ostinato algo-
rithm that finds the consensus radius for all subsequences,
i.e. the radius profile, rather than the top-k. Due to the
anytime property, we can choose to spend a longer runtime
for more accurate results. Still, we show that we get
representative results for all subsequences in less time than
it takes Ostinato to find the top-1 result and that in some
cases the complete, exact calculation is faster than the top-
1 Ostinato calculation. Secondly, we present an algorithm
that finds the radius profile for a single series, allowing us
to find repetitions in a series or in multiple series while
ignoring where these repetitions occur.

The source code for our algorithms and the experiments
listed in this paper have been made available online [2],
as well as an extended version of this paper containing
additional visualisations and pseudo code.

II. Related Work
To the best of our knowledge, little to no work can be

found regarding repeating patterns in real-valued series.
Motif discovery techniques, such as Matrix Profile [3], aim
to find the best matching subsequence pair rather than
the most common one. However, the best match is not
guaranteed to also be part of the most common pattern-
group. An adaptation of the Matrix Profile technique has
been used to find time series chains, which are repeating
patterns that slowly change throughout time [4]. Again,
there is no guarantee that these chains will overlap with
the best repeating pattern, because time series chains
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assume a gradual changing pattern. Another variation
is the Time Series Snippets algorithm [5], which looks
for representative subsequences to summarize a series.
However, this algorithm only considers a subset of all
subsequences and will evaluate similarity against the entire
dataset, making it unsuited for cases where we want to
find well-preserved patterns with few repetitions. From the
music domain, REPET is a Fourier based technique to sep-
arate foreground audio from repeating background music
[6]. The technique assumes the pattern is repeated contin-
uously, as is often the case in background music, making
it unsuited to find patterns that are spread throughout a
series. To conclude, it seems only the Ostinato algorithm,
described in the recent work by Kamgar et al. deals with
finding repeated patterns in multiple real-valued series [1].

III. The Ostinato Algorithm
In this section, we provide an overview on how Ostinato

works and highlight some of its properties. However, we
first introduce the distance matrix as a visual aid for this
and later sections.

Given a number of time series S1, . . . , Sn and a sub-
sequence length m, we can represent the pairwise dis-
tance of all subsequences as a distance matrix D, as
shown in Figure 1. Here, both axes represent all possible
subsequences. That is, element D[i, j] contains the (z-
normalized Euclidean [3]) distance between the i-th and
j-th subsequence.

Figure 1 also shows the relation between the distance
matrix and a consensus motif. For any subsequence c,
we can calculate the distance between c and the best
matching subsequence of all series (i.e. d1, d2, d3 and d4
in Figure 1). The maximum value of these distances is
defined as the radius r. The top-k consensus motifs are
the k subsequences for which the radius is minimal.

Ostinato finds the top-1 consensus motif and corre-
sponding radius using a straightforward greedy branch
and bound approach. For series S1, it calculates all sub-
sequence distances between S1 and S2, tracking the best
distance for each subsequence of S1. Next, the subsequence
with the lowest distance is considered the candidate con-
sensus motif and its radius is calculated by determining
the distance with all other series. At this point, Ostinato
has an upper bound and repeats the process for all other
subsequences of S1, aborting the search if at any time the
upper bound is passed. After all subsequences of S1 have
been considered, the search is repeated for the next series.
Pseudocode and a visual representation of this process can
be found in the extended version of this paper [2].

Due to the branch and bound approach, the runtime of
Ostinato is dependent on details of the time series. In a
very bad case, Ostinato has to calculate a large portion
of the distance matrix (excluding the self-join of each
series). In the very best case, it has to calculate n full-
series calculations and one single column. In more realistic
cases, the number of columns calculated will depend on
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Fig. 1. Distance matrix for four series S1, . . . , S4. Each row i and
column j represents a single subsequence of one series and the
element at index [i, j] corresponds to the distance between those
subsequences. As a side effect of this, the main diagonal (dashed blue)
consists of all zeros. The consensus radius of a specific subsequence c
is calculated by finding the best matching subsequence for all series
and taking the maximum of these distances (d1, . . . , d4). The top-k
consensus motifs are the k subsequences with the minimum radius.

the relation between the found upper bound and any
distances that remain to be calculated. As an unfortunate
side effect of this, the performance of Ostinato degrades
when a specific pattern is repeated in all series but one, for
example due to a labeling error. Not only will this cause
a poor result, but the calculation will also take longer to
finish due to the higher upper bound.

We demonstrate this is in Figure 2, where we compare
the timings of four different collections of time series.
The first collection consists of 10 identical series, and
represents the optimal case for Ostinato. The second
collection consists of 10 series of random noise, where we
expect a large upper bound due to the lack of patterns.
The third collection represents real-world data and was
extracted from the REFIT power consumption dataset
(aggregate readings from the first house) [7], with each
series corresponding to a different time range. As shown
later on, this dataset contains multiple repeating patterns.
The final collection was the same as the third, but with one
series replaced by randomly sampled noise, as to mimic an
incorrectly labeled time series. The length of each series
was chosen as a multiple of two, and the subsequence
length was 1024, as was used in the benchmarks of the
original paper [1].

As expected, the timings in Figure 2 show a similar
trend, but vary greatly between the different types of time
series. It is somewhat surprising how the longest runtime
does not belong to the random dataset, but rather to the
realistic dataset where one series was replaced with noise.
In this case, the runtime is about 16 times longer than the
optimal case. We suspect this is due to the large amount
of good matches, all of whose distances will be obtained
through column-calculations, only to end up with a poor
match in the random series, whereas the pure random data
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Fig. 2. Timings for Ostinato on four different types of time series
data for subsequence length 1024. Each time, the input consisted of
10 series of the same length. We see that the type of data has a major
influence on the runtime, due to the branch-and-bound approach.

will have few good matches overall.
Each of the n full-joins are calculated in O(l2) using

the STOMP [8] algorithm, and each column is calculated
using the MASS algorithm in O(l log l) [9], with n rep-
resenting the number of series and l the average series
length. Overall, we can say the memory complexity is O(l)
and the time complexity is O(n2l2 log l). Note that the
subsequence length m does not affect the runtime.

Two variants of Ostinato are mentioned in the original
paper [1]. The first variant lets Ostinato find the top-k
consensus motifs by tracking the k best results instead of
the single best one. Overall, this will result in a higher
upper bound and more column-wise calculations in the
distance matrix. The second variant can be used to find the
top-1 k of n consensus motif, namely the best consensus
motif that can be found in a subset of k series. To do this,
a full join is calculated and best matches are tracked for
each series to n − k + 1 other series, rather than one.

As we have shown, Ostinato is an exact and fast algo-
rithm for finding the top-1 (or top-k) consensus motifs.
However, there are still some limitations. While it could
return intermediate solutions, Ostinato remains a batch
algorithm [1], which might be unsuited for applications
with strict time constraints. Secondly, the upper bound
calculation differs for the top-k and k of n variants,
meaning that the user needs to have an idea of what he
is looking for before starting a calculation. In the next
section, we present an anytime version of Ostinato to
calculate not only the top-k motifs, but all consensus
motifs, including all k of n variants, in a single run.

IV. Finding All Consensus Motif Radii
Finding all consensus motifs rather than the top-k might

give further insights into the properties of the series. This
is similar as to how the Matrix Profile [3] was originally
introduced as a way to find all motifs rather than only the
top motif, but has since seen numerous other applications
including series segmentation, visualization or rule mining.
In a way, it does not make sense to talk about finding all
consensus motifs, since every subsequence is one. Instead,
in this section we will discuss how to find the correspond-
ing radius for each subsequence, i.e. the radius profile.

Looking back at Figure 1, we could simply calculate
the full distance matrix (excluding the diagonal blocks),
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Fig. 3. Visual representation of the distance calculation for the
Anytime Ostinato algorithm. Diagonals are calculated for each pair
of series in the upper triangle of the distance matrix (red solid lines),
and the distances are reused in the lower triangle (blue dotted lines).
Whenever a diagonal is calculated for a pair of series (e.g. D13),
the two corresponding matrix profiles are updated (e.g. MP13 and
MP31). Note that we do not visualize all tracked matrix profiles.

and calculate the radius for each subsequence one after
the other. This approach works and closely resembles the
STAMP variant of Ostinato used by Kamgar et al. [1] for
benchmarking, but is considerably slower than Ostinato.
However, there is a better way to approach this problem.

A. Algorithm
Our solution consists of three parts. First, we can exploit

the fact that the distance matrix is symmetric, i.e. the
distance at index [i, j] is the same as the distance at
index [j, i]. This allows us to avoid half of all distance
calculations. Secondly, for each subsequence, we track the
distance to the best matching subsequence of the other
series, i.e. the Matrix Profile for each pair of series. Finally,
instead of calculating the distances column-wise (using
STAMP or STOMP), we calculate diagonals using the
SCRIMP [10] algorithm. A visual representation of our
approach is shown in Figure 3.

By calculating diagonals, we effectively obtain an any-
time calculation for the consensus radius of each subse-
quence. And, as we will demonstrate below, the anytime
estimate on a small subset of the data still gives a repre-
sentative radius estimate for each subsequence, from which
we can also distill the top-k motifs.

Storing the matrix profile for each pair of series (ex-
cluding self-joins) provides all information to know the
radius of each subsequence for both the top-k consensus
motifs as well as the k of n variant. Furthermore, it allows
us to resume refining the matrix profiles after looking at
intermediate results, which could prove useful for data
exploration purposes. One downside of this approach is
the O(n2l) memory usage, though this can be reduced to
O(nl) if the resumability property is dropped and we do
not need the k of n variant, by processing the distance
matrix in series-based batches.



As our algorithm is stateful, it consists of an initializa-
tion, a calculation, and a result extraction step.

In the initialization step we iterate over all pairs of series
from the upper triangle of the distance matrix, create a
stateful class to calculate both matrix profiles and finally
store the calculator and output variables. At this point,
all matrix profiles contain only infinite distances.

The calculation step is straightforward: for each of the
SCRIMP calculators (for which we refer to the SCRIMP
paper [10]), we calculate diagonals until the desired frac-
tion of all distances has been processed. For each diagonal
calculated, the distances are used to update both corre-
sponding matrix profiles.

At any point we can get the all-subsequence consensus
radius by collecting the maximum distance per subse-
quence or the all-subsequence k of n consensus radius by
collecting the k − 1 lowest distances.

Pseudocode can be found in our extended paper [2].

B. Results on the REFIT Dataset

To demonstrate our technique, we use the REFIT
dataset [7], which was also used in the original Ostinato
paper. We extracted seven time series of the aggregated
power consumption of the first house, each a day long
(about 12843 data points), from the first week of December
2014. Using Ostinato, we calculated the top-1 consensus
motif using a subsequence length of 800 (one and a half
hours), which took 94 seconds. Next, we calculated the
radius for all subsequences using our Anytime Ostinato
algorithm for 5, 10, 25, 50 and 100 percent of the data.
This took respectively 20, 36, 86, 170 and 328 seconds.

The results are shown in Figure 4. At the top, the radius
profile for a single day is shown. For visual clarity, we have
normalized the distances to a range of zero to one [11] and
only show results for the smallest (five percent) and com-
plete calculation. Even though the complete calculation
used twenty times the amount of distance calculations,
we see that the results are very similar. At the bottom
of Figure 4, we see the top-3 consensus motifs for both
calculations. Again, we can see that all resulting consensus
motifs are very similar. In fact, the top-1 motif found
using five percent of all calculations is simply a shifted
version of the true top-1 motif. This means that we were
able to obtain a representative estimate of the radii for all
subsequences in less than a fourth of the time it took to
obtain the assured top-1 motif using Ostinato.

Similarly we see how the top-2 and top-3 consensus
motif calculated on 5% of the data closely resemble the
true top-2 and top-3 motifs. In all cases, a better radius
was found by examining the remaining 95% the data. Note
that none of the 5% motifs are not wrong in the way
that they never overestimate the radius. Instead, as more
data is processed the radii for those patterns could still
decrease or other patterns could be found to change the
top-k listing.
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Fig. 4. Top: Radius profile for the fourth day (which contains the top-
1 motif), using either five percent or using all distance calculations.
We see that even when calculating only a small fraction, the profile
matches very well with the exact profile. Bottom: the top-3 consensus
motifs found in the fourth day of data using 5% (blue solid) or 100%
(red dotted) of the calculations. Each motif corresponds to a local
minimum in the radius profile.
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Fig. 5. Timings for Anytime Ostinato for various calculation percent-
ages, overlayed with the Ostinato results from Figure 2. Note that the
anytime algorithm is not affected by the type of data. Again, each run
was done with 10 series of the same length and subsequence length of
1024. We see how the normal REFIT data takes about equally long
as a 25% run, and how a complete 100% run is still twice as fast as
the worst case runtime of Ostinato.

Next, let us look deeper at the runtime of our Anytime
Ostinato technique. In Figure 5, we show the timings
for various percentages of calculated distances, and over-
lay these with the Ostinato timings. Note that unlike
Ostinato, the runtime for our algorithm is not affected
by the type of data since we do not use a branch and
bound method. As we can see, our 100% calculation is
still faster than the worst result for Ostinato. For the
most representative timing, we should look at the non-
modified results for the REFIT dataset. In this case, we
can calculate between 10 and 25 percent to get a similar
runtime as Ostinato. However, our anytime algorithm
returns a result for all subsequences, while Ostinato only
finds the top-1 consensus motif.

V. Finding the Most Common Patterns

Both Ostinato and our improved anytime version are
meant to find the patterns that are best conserved over
multiple series, i.e. consensus motifs. Similarly, the Matrix
Profile can be used to find the best preserved pattern
within a single series, i.e. motifs. However, neither tech-
nique can be efficiently used to find the top-k best con-
served patterns occurring multiple times in a single series.
We could call these the intra-series consensus motifs, but
to avoid confusion with the multi-series consensus motif,
we opt to call these patterns common motifs instead.
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Fig. 6. Visualization of the link between the distance matrix and
common motif radii. We calculate the distance for a single subse-
quence to the entire series (orange column). From this vector, we
iteratively find the lowest distance (= best match ), each time ignor-
ing the p subsequences near any previous match (e.g.: d0, d1, d2, . . .).
Since we ignore the orignal sequence (d0), this means the common-1
radius equals d1, the common-2 radius is d2 and so on.

At this point, there are two ways to formalize these
common motifs. One way is to define a distance threshold
and find the subsequences that have most matches under
this threshold. The second way is to define a number of
required matches and determine the subsequence that has
the least distance from these matches. We opted for the
second interpretation as it allows us to reuse the notion of
a motif radius. In other words, for any subsequence s, we
find the best k matches within the series and define the
radius as the maximum distance of these matches. Then,
the top-1 common-k motif is the subsequence for which
this radius is minimal. To avoid the issue of trivial matches
[3], where nearby sequences have similar distances, we
require matches to be at least p = m

2 indices apart
from each other and disregard the vicinity of the original
subsequence s as well.

A. Single Series Radius Profile Algorithm
We show the relation between the distance matrix and

the common motif radii in Figure 6. Again, the distance
matrix is a square where each column or row represents a
single subsequence from a series S. Note that we can also
apply our technique to find the most common pattern in
a set of series by simply appending the series, with a nan
marker in between.

For a specific subsequence, we can calculate the dis-
tances to each subsequence in S, as shown by the orange
column in Figure 6. From this distance vector, we iter-
atively look for the minimum value (= the best match),
each time ignoring the subsequences within p positions of
any minimum found so far, e.g. d0, d1, d2, . . . If we ignore
the distance from our original subsequence d0, the other
values are the the common-1, common-2, . . . radii for this
subsequence.

Again, the actual algorithm is straightforward. We
iterate over all subsequences and for each subsequence
we calculate the distance to all subsequences using the
STOMP algorithm [8]. The STOMP algorithm calculates
columns in the distance matrix similar to STAMP, but is
faster when calculating neighbouring columns. Next, we
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Fig. 7. Top: 20 minute extract of the PAMAP2 dataset consisting of
four activities, separated by transition periods. Bottom: Single series
radius profile, using a subsequence length of 100 (1 second). The
radius differs depending on the activity being performed. The more
repetitive the signal, the lower the radius. The radii are lowest for
the walking and running activities, this means that the patterns are
most similar through the data. The cycling activity has a high radius,
meaning the subsequences are not repetitive.

iterate over all distances from lowest to largest. We count
the number of non-excluded matches, mark the exclusion
zone and skip excluded distances. Finally, we record the
needed radii and skip to the next subsequence once all
radii for the current subsequence are found.

Pseudocode can be found in our extended paper [2].

B. Results on the PAMAP2 Dataset
We demonstrate our technique on the PAMAP2 phys-

ical activity dataset [12], which contains accelerometer
recordings of participants performing various activities.
For demonstration purposes, we limit ourselves to an ex-
tract of the y-accelerometer of the first subject performing
four different activities, as shown in Figure 7 (top).

We calculated the common-k radius profile for values 1,
50 and 250 for subsequence length 100 (i.e. 1 second of
recording). These profiles are shown in Figure 7 (bottom).
Again, the distances have been normalized.

We see how the walking, nordic walking and running
activity have low radii, meaning that the corresponding
signals are repetitive. One exception here is the high
common-250 radius for the running activity, meaning that
there are less than 250 good matches to each subsequence,
which is most likely a result of the repetition interval and
the exclusion zone for trivial matches. While the radius
profile shows how repetitive each part of the signal is, it
gives no direct insight as to which parts are similar to each
other. Fortunately, we can use the radius profile to mine
for common patterns with some additional work.

C. Finding the Top-k Common Motifs
The top-1 common-k motif is easily determined: it is the

subsequence for which the common-k radius profile is min-
imal. However, finding the top-k patterns is a little more
challenging. Consider we have found the top-1 common-
k pattern p1 and also know its k matching subsequences
m1, . . . , mk. For the top-2 pattern, we obviously exclude
p1. As m1, . . . , mk are very similar to p1, it makes sense
to also exclude these as well. However, there might be
other sequences than m1, . . . , mk that are similar to p1,
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Fig. 8. The top-6 common-100 motifs for the PAMAP2 dataset. On
the left we show the motif (blue) overlayed with the 10 best matches
(light gray). On the right, we show the locations of the 100 matches
that fall within the radius of the motif. We see that the common
motifs originate from the three activities with repetitive behavior.
Some motifs appear similar to each other, which can be explained due
to slight variations of the activity speed, but also due to an imperfect
similarity threshold.

perhaps having some of their k best matches overlap with
m1, . . . , mk. Ideally, we want to exclude all matches to p1
that we consider as too similar, though we do not know in
advance where exactly this threshold is.

Our approach for finding the top patterns is straight-
forward. We start by finding the top-1 pattern. Next,
we calculate the distances between this pattern and all
subsequences in the series using MASS. Whenever a sub-
sequence is a good match (and thus is below a predefined
similarity threshold), we exclude both the subsequence as
well as the neighbouring subsequences, by changing the
radius to infinity. This process is repeated until no more
motifs can be found. Pseudocode can be found in the
extended version of this paper [2].

D. Common Motifs in the PAMAP2 Dataset
Figure 8 shows the top-6 common-100 motifs for the

PAMAP2 dataset, along with the location of each of the
100 matches in the data. We see that the top-1 and top-
5 motif are very similar and correspond to the running
activity. The other four motifs are shared between the
walking and nordic walking activity. While the occurrences
show how the patterns are distinguishable between these
activities, there are overlaps, most noticeable for pattern
six. We used a distance threshold of 0.14, which was
determined manually after inspecting the first motif.

VI. Conclusion
In this paper we tackled the question on how to find

repeating subsequences in one or more time series con-
taining real values. For this, we have introduced a new
time series primitive, i.e. the radius profile. This radius
profile contains the radius for each subsequence in a series,
where the radius is the maximum distance needed to reach
a predefined number of best matches.

A first case concerns finding repetition across multiple
series. For this we have extended the Ostinato algorithm,

which calculates the top-1 radius, to an anytime version
that calculates all radii. Our Anytime Ostinato algorithm
can calculate an exact profile or make an estimate in a
fraction of the time. Even an exact calculation can still be
faster than Ostinato for some types of input data. Using
the consensus radius profile, one can easily find the k
patterns that are most similar over (a subset of) the series
collection, i.e. the consensus motifs.

A second case concerns finding well-preserved repeti-
tions in one or more series, irrespective of where they are
repeated. Here, we have introduced a new algorithm to
find the common-k radius profile, where k represents a
predefined number of matches. The profile can be used
to visualize the repetitive nature of data and to find the
patterns that are repeated in a series, i.e. common motifs.
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